
An Empirical Study on the Impact of Deimplicitization on
Comprehension in Programs Using Application Frameworks

Jürgen Cito∗
TU Wien, Austria

MIT CSAIL
Cambridge, MA, USA

Jiasi Shen∗
MIT CSAIL

Cambridge, MA, USA

Martin Rinard
MIT CSAIL

Cambridge, MA, USA

ABSTRACT
Background: Application frameworks, such as Ruby on Rails,

introduce abstractions with the goal of simplifying development for
particular application domains, such as web development. While
experts enjoy increased productivity due to these abstractions, the
flow of the programs is often hard to understand for non-experts
and newcomers due to implicit flow and concealed lower level
action that seems like “magic”.

Objective: We conjecture that converting these implicit flows into
an explicit and unified form can help non-experts comprehend the
programs using these frameworks. We call the process of unifying
distributed, implicit flows into a single routine deimplicitization.

Method: We want to conduct an experiment that studies the im-
pact of deimplicitization on program comprehension. Particularly,
we want to study how software developers with different expertise
(novices/students, framework experts/professional developers) can
answer comprehension questions differently with respect to time
and correctness, under the treatments of either a deimplicitized
version of the program in Python or the original version of the
program in Ruby on Rails.

ACM Reference Format:
Jürgen Cito, Jiasi Shen, and Martin Rinard. 2020. An Empirical Study on
the Impact of Deimplicitization on Comprehension in Programs Using
Application Frameworks. In 17th International Conference onMining Software
Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3379597.3387507

1 INTRODUCTION
Application frameworks, such as Ruby on Rails, introduce abstrac-
tions with the goal of simplifying development for particular ap-
plication domains (e.g., web development). Proponents of these
frameworks argue that the high learning curve introduced by the
abstractions are justified because they result in increased produc-
tivity for expert developers. However, an unfortunate ancillary
consequence is that programs written in these frameworks are

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387507

often hard to understand for non-experts and newcomers to the
codebase.

Continuing the example of Ruby on Rails, its abstractions intro-
duce difficulties in the following aspects:
• Implicit flow of dynamic languages and dynamic dispatch.
• Intensive use of indirection through listeners.
• “Magic” functionality introduced through metaprogramming.1

• Behavior in the codebase without explicit flows due to abstrac-
tions in application frameworks (e.g., MVC — Model View Con-
troller paradigm).

These implicit flows provide high-level programming abstractions
for these frameworks. However, a downside is that programs using
these frameworks may perform low-level actions not apparent in
the source code, which often appear as unpredictable behavior or
unexpected semantics [1, 2, 7–9] to non-experts.

1.1 Deimplicitization
We conjecture that converting these implicit flows into an explicit
and unified form can help non-experts comprehend the programs
using these frameworks. We call the process of unifying implicit
flows into a single routine deimplicitization.

To deimplicitize programs that use these frameworks, we im-
plemented an approach, Konure [6], that uses active learning to
infer programs that access relational databases. The Konure paper
presents experiments where Konure infers the functionality of pro-
grams in various languages (Ruby on Rails, Java, and Python) and
regenerates the functionality in Python.

1.2 Konure
Figure 1 provides an overview of the Konure architecture. When
Konure executes the program, the Konure proxy collects the traffic
between the program and the database. As a result Konure observes
all of the low-level SQL queries performed by the program. Note that
these queries are often hidden from developers — the application
frameworks are designed to implicitly perform low-level queries
based on high-level source code.

Konure uses an internal domain specific language (DSL) to rep-
resent the observed program functionality. This DSL supports (a
subset of) SQL queries, along with variable references and control
structures such as conditional branches and bounded loops. Konure
works with black box programs whose externally visible behavior
conform to the DSL. Because Konure does not need to analyze the
source code of these programs, the programs may be implemented
in any languages or application frameworks. Given a potentially

1https://medium.com/ruby-on-rails/demystifying-the-magic-of-rails-416d2195f098

https://doi.org/10.1145/3379597.3387507
https://doi.org/10.1145/3379597.3387507

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Jürgen Cito, Jiasi Shen, and Martin Rinard

implicit program whose behavior conforms to the DSL, Konure
infers the program functionality and translates it into a unified and
explicit Python routine. When the original program is implemented
with implicit application frameworks such as Ruby on Rails, the
regenerated Python routine serves as a deimplicitized version of
the original program.

This study investigates how deimplicitization affects the compre-
hension of programs that are built with application frameworks.

2 HYPOTHESES & RESEARCH QUESTIONS
We formulate our high level hypothesis as follows:

Deimplicitization can help developers comprehend im-
plicit programs.

In the text that follows, we refer to the deimplicitized version of an
implicit program as its corresponding “deimplicitized program.”

2.1 Research Questions
Our empirical study reflects on the following research questions:
• RQ1: Do deimplicitized programs reduce the time needed to
complete comprehension tasks on the corresponding implicit
programs?
• RQ2: Do deimplicitized programs increase the correctness of
comprehension tasks on the corresponding implicit programs?
• RQ3: Does the participants’ expertise in the application frame-
works influence the time to complete or the correctness of the
tasks?

These research questions follow from our high level hypothesis on
deimplicitization.

2.2 Hypotheses
We translate the research questions RQ1 and RQ2 into the follow-
ing testable hypotheses:
• H10: There is no difference in the response time between partic-
ipants that access or do not access the deimplicitized programs.
• H20: There is no difference in the correctness of responses be-
tween participants that access or do not access the deimplicitized
programs.

Their corresponding alternative hypotheses are as follows:
• H1a : The response time is shorter for participants that access
deimplicitized programs than participants that do not.
• H2a : The correctness of responses is higher for participants that
access deimplicitized programs than participants that do not.
To study RQ3, we will conduct two separate experiments:
• Experiment I focuses on novices.
• Experiment II focuses on experts.
For each experiment we will independently test the two hypotheses
described above.

DB

Konure
Inference Algorithm

Konure
Proxy

New program with
same core functionality

Application
main logic

Figure 1: The Konure architecture, including a transparent
proxy interposed between the application and the database
to observe the generated database traffic.

3 VARIABLES
We briefly describe the variables involved in our experiments. The
independent variable is:
• Deimplicitization, dichotomous variable. This variable repre-
sents whether a participant has access or has no access to a
deimplicitized program.

The dependent variables can be described as follows:
• Time Spent, in seconds (H10). This variable represents the time
from a participant being presented with a task until providing
an answer.
• Correctness, dichotomous variable (H20). This variable repre-
sents whether a participant answers a task correctly or incor-
rectly. We only distinguish between fully correct answers. There
is no “partial credit” for answers.
We additionally introduce the following control variables:
• RoR Familiarity, in years. This variable represents a partici-
pant’s prior experience working with Ruby on Rails, which is
the application framework of the implicit programs.
• Python Familiarity, in years. This variable represents a par-
ticipant’s prior experience working with Python, which is the
language of the deimplicitized programs.
• SQL Familiarity, dichotomous variable. This variable repre-
sents whether a participant has prior experience with SQL, ei-
ther through direct working experience or through education.
• StudyObjectDifficulty/Complexity. This variable represents
the level of difficulty/complexity of a study object, which is an
open source Ruby on Rails project supported by Konure.

We anticipate that the major confounding variable is the prior
experience with the relevant application framework and languages,
that is, Ruby on Rails, Python, and SQL. We plan to control for the
effect of these confounding variables by focusing the population
for each experiment on a small range of expertise levels.

An Empirical Study on the Impact of Deimplicitization on Comprehension in Programs Using Application Frameworks MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

def get_admin_pages_id (conn , inputs):
util.clear_warnings ()
outputs = []
s0 = util.do_sql(conn , "SELECT `pages `.* FROM `pages

` WHERE `pages `.`id ` = :x0 LIMIT 1", {'x0':
inputs [0]})

outputs.extend(util.get_data(s0, 'pages ', 'id'))
outputs.extend(util.get_data(s0, 'pages ', 'title '))
outputs.extend(util.get_data(s0, 'pages ', 'slug'))
outputs.extend(util.get_data(s0, 'pages ', 'body'))
return util.add_warnings(outputs)

Figure 2: A Python routine generated by Konure after infer-
ring an API of a Ruby on Rails application.

4 MATERIALS & OBJECTS
As part of our study objects we use open source applications of
various sizes and complexities that are built with application frame-
works. Specifically, we use the Ruby on Rails projects in the experi-
ments of the Konure paper [6]:
• Enki, Content Management. The source code is available at
https://github.com/xaviershay/enki.
• Fulcrum, Agile Project Management.
The source code is available at
https://github.com/fulcrum-agile/fulcrum.
• Kandan, Online Chat. The source code is available at
https://github.com/kandanapp/kandan.
• Blog, Sample Application. The source code is available at
https://guides.rubyonrails.org/getting_started.html.

The Enki, Fulcrum, and Kandan applications are open source projects
each with hundreds of stars on GitHub. The Blog application is
adapted from the standard online tutorial.

Each of these applications consist of a user interface as a web
page and a back-end server that accepts API calls from the web
browser. When an API is called, the application server translates
the input parameters into SQL queries against a relational database
and returns results extracted from the results of the queries. The
web interface then renders the query results in user-friendly layout
and displays the resulting web page.

From these applications we adopt APIs that are studied in the
Konure paper [6]. For each API, we obtain its deimplicitized Python
routine by adapting from the code regenerated by Konure.2 As an
example, Konure regenerated the Python routine in Figure 2 for an
API in Enki that retrieves a page by its ID.

As a preprocessing step, we will extend the procedure to sys-
tematically rewrite the Python routines to eliminate unnecessary
artifacts that were automatically generated by Konure, including:
• eliminating redundant or unused statements,
• removing redundant conditional checks if both of the condi-
tional branches are equivalent,
• replacing systematic variable names with descriptive words,
such as the names of relevant tables, and
• renaming library function calls, data fields, input arguments,
and output operations, so that the code is more readable.

2The code regenerated by Konure is available at an online appendix associated with
the paper: http://people.csail.mit.edu/jiasi/pldi2019.code/.

The goal is to allow the deimplicitized code to provide similar
information as in potential deployment scenarios.

5 PARTICIPANTS/SUBJECTS
For both experiments, we recruit participants with software devel-
opment experience who have at least one year of Python program-
ming experience and are familiar with relational databases and
SQL syntax. Because Python is widely used and because databases
are often taught in undergraduate institutions, we believe that this
population is broad enough for general interest. Additionally:
• Experiment I participants must have no prior experience with
Ruby on Rails (novices).
• Experiment II participants must have at least one year of pro-
gramming experience with Ruby on Rails (experts).
Before starting each experiment, we plan to first conduct a pilot

study to estimate the effect sizes. Based on this preliminary data,
we will perform a power analysis and aim for at least 40% statistical
power, which is common for software engineering experiments [4],
at the standard 0.05 level (α = 0.05). We will then determine the
sample size based on the results of the power analysis and the
availability of participants.

6 EXECUTION PLAN
For each experiment, we assign participants into two groups:
• Control Group participants are shown only the implicit pro-
grams, i.e., the Ruby on Rails source code.
• Treatment Group participants are shown both the implicit
programs and their corresponding deimplicitized programs, i.e.,
both the Ruby on Rails source code and the corresponding deim-
plicitized Python routine.

To familiarize participants with the study environment, we plan to
start the session with a warm up task to explain the setting. The
code is shown in a syntax highlighted text editor. We do not allow
participants to execute or modify the code.

Participants are then asked to comprehend several application
APIs. For each API, participants answer questions about the func-
tionality shown in the code. As soon as the code and question are
displayed, we automatically start to measure the time to task com-
pletion, which is completed as soon as participants move on to
the next question (or complete the experiment session). We fol-
low up with open-ended questions for participants to discuss their
experience.

7 ANALYSIS PLAN
To provide an overview of the study results, we plan to present
summary statistics (mean, median, standard deviation, max, min)
over the treatment groups and overall for the dependent variables
(time in seconds, number of correctly fulfilled tasks). Additionally,
we want to show the distribution as part of a histogram.

As for significance tests, we plan to follow a frequentist approach.
We would first test for normality by conducting a Shapiro-Wilk test.
Depending on the distribution, we would then either perform a t-
test or Mann-Whitney U test. We will do this for our variablesTime
Spent and Correctness. Since correctness is a binary variable, our
measure will be the number of correct answers given.

https://github.com/xaviershay/enki
https://github.com/fulcrum-agile/fulcrum
https://github.com/kandanapp/kandan
https://guides.rubyonrails.org/getting_started.html
http://people.csail.mit.edu/jiasi/pldi2019.code/

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Jürgen Cito, Jiasi Shen, and Martin Rinard

We initially calculated effect size as part of our power analysis.
We also set out to estimate the extent of how substantially different
the measures in our full dataset are by calculating the effect size
again. We choose the particular procedure to calculate effect size
given the distribution of our sample measures. Cohen’s d is an
appropriate comparison between two means, usually to accompany
a t-test [3]. Cliff’s delta is a non-parametric effect size measure that
is used to calculate the frequency of values in one distribution differ
from values in another distribution [5].

8 THREATS TO VALIDITY
Prior experience with Ruby on Rails could affect the results. We
mitigate this threat by focusing each experiment on only novices
or only experts.

Using a specific sample of small to medium size Ruby on Rails
applications and APIs could limit the ability to generalize the results,
especially for RQ1 (time), to larger applications or applications
with different code quality (e.g., availability of comments). We
anticipate that the results forRQ2 (correctness) andRQ3 (expertise)
are still relevant for larger applications, given that the focus is on
one input/output flow targeting a particular entry point of the
application.

Using a research tool (Konure) could limit the ability to generalize
the results to deployment scenarios. We mitigate this threat by
preprocessing the Konure deimplicitization outputs systematically
to mimic potential deployment scenarios.

Focusing on only one abstraction framework (Ruby on Rails)
could limit the ability to generalize the results to other abstraction
frameworks, especially frameworks that adopt different abstraction
strategies. However, the particular abstractions (model abstraction,
view abstraction, routing, inversion of control) that we target with
Konure are traits that are prevalent inmany other application frame-
works, such as Python/Django, PHP/Symfony, and Java/Spring. This
increases the likelihood that our results generalize within the scope
of these application frameworks.

Using only one deimplicitization tool could limit the ability to
generalize the results to other potential tools that deimplicitize
programs in other domains of computation.

ACKNOWLEDGEMENT
The first author was funded by the Swiss National Science Foun-
dation (SNSF) under project Automated Synthesis and Repair of
Infrastructure Code (no. 178036).

REFERENCES
[1] T. Chen, W. Shang, Z. Jiang, A. E. Hassan, M. Nasser, and P. Flora. Finding and

evaluating the performance impact of redundant data access for applications that
are developed using object-relational mapping frameworks. IEEE Transactions on
Software Engineering, 42(12):1148–1161, dec 2016.

[2] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-
backed applications with query synthesis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages
3–14, New York, NY, USA, 2013. ACM.

[3] Jacob Cohen. Statistical power analysis for the behavioral sciences. Routledge, 2013.
[4] T. Dybå, V. B. Kampenes, and D. I.K. Sjøberg. A systematic review of statistical

power in software engineering experiments. Information and Software Technology,
48(8):745 – 755, 2006.

[5] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. Cliff’s
delta calculator: A non-parametric effect size program for two groups of observa-
tions. Universitas Psychologica, 10(2):545–555, 2011.

[6] Jiasi Shen and Martin C Rinard. Using active learning to synthesize models of
applications that access databases. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 269–285.
ACM, 2019.

[7] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Understanding database
performance inefficiencies in real-world web applications. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, CIKM ’17,
pages 1299–1308, New York, NY, USA, 2017. ACM.

[8] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung. How
not to structure your database-backed web applications: A study of performance
bugs in the wild. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 800–810, New York, NY, USA, 2018. ACM.

[9] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. Pow-
erstation: Automatically detecting and fixing inefficiencies of database-backed
web applications in ide. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pages 884–887, New York, NY, USA, 2018.
ACM.

	Abstract
	1 Introduction
	1.1 Deimplicitization
	1.2 Konure

	2 Hypotheses & Research Questions
	2.1 Research Questions
	2.2 Hypotheses

	3 Variables
	4 Materials & Objects
	5 Participants/Subjects
	6 Execution Plan
	7 Analysis Plan
	8 Threats to Validity
	References

