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The advances in modern storage technologies necessitate the development of new input/output (I/O) APIs
to maximize their performance benefits. However, migrating existing software to use different APIs poses
significant challenges due to mismatches in computational models and complex code structures surrounding
stateful, non-contiguous multi-API call sites. We present Sprout, a new system for automatically migrating
programs across I/O APIs that guarantees behavioral equivalence. Sprout uses flow-sensitive pointer analysis
to identify semantic variables, which enables the typestate analysis for matching API semantics and the
synthesis of migrated programs. Experimental results with real-world C programs highlight the efficiency and
effectiveness of our approach. We also show that Sprout can be adapted to other domains, such as databases.
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1 Introduction
Computer software is ubiquitous and represents a vast amount of human effort, knowledge, and
creativity. This software often relies on application programming interfaces (APIs) that are closely
tied to specific platforms. As new platforms emerge, the software that depends on existing APIs
can become obsolete. However, migrating existing software to modern APIs has been complex
and challenging. This situation forces a choice: either cling to outdated systems that are unable
to leverage the full benefits of modern technologies, or discard valuable existing software to
develop new programs from scratch, which is costly and inefficient. Despite decades of research
and significant effort invested in developing automated migration techniques [4, 85, 89, 90], success
has been limited, causing substantial costs to society [25, 31, 61–64, 72].

One prominent example is associated with the evolution of storage technologies. Modern storage
technologies offer substantial benefits in speed and efficiency. To maximize these benefits, it is
crucial to design abstractions that leverage insights about the optimal ways to use the hardware.
For example, traditional POSIX interfaces [30] are widely recognized as suboptimal for the latest
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hardware, and there is a consensus that existing system calls are inadequate for modern computing
environments [28, 43, 68, 88, 96]. This issue arises mainly because POSIX interfaces closely resemble
those of the original Unix [73], which rely on foundational assumptions that have become obsolete
due to advances in computer speed and capacity, such as the assumption that memory is significantly
faster than input/output (I/O) devices, which led to I/O system calls that involve copying data to
or from memory. However, with advances in high-speed I/O devices such as 100Gb/s network
cards [50, 70] and non-volatile memory (NVM) [3, 32], this assumption no longer holds, and
additional memory copying introduces considerable performance overhead. As a result, much
research advocates for the redesign of storage APIs to maximize potential hardware benefits [9, 10,
26, 28, 38, 43, 51, 52, 68, 74, 88, 96]. Adopting the redesigned APIs involves migrating existing user
applications, but unfortunately, this task has been difficult, tedious, and expensive.

1.1 Challenges
Migrating programs that rely on I/O APIs is crucial but challenging due to different computational
models in various storage platforms. For example, SubZero [43] offers new file system APIs for
NVM to replace POSIX APIs [30], and experiments indicate significant performance gains [43].
Migrating a program to SubZero involves transforming the POSIX (p)read and (p)write calls
into SubZero’s peek and patch API. This task requires understanding the underlying computation
and the semantic differences between the APIs. Several notable challenges arise:
• Semantic mismatch between old and new APIs. To maximize performance benefits of
modern storage technologies, it is often necessary to change programming paradigms and adopt
different conventions [43, 88, 96]. Consequently, APIs may not align perfectly in semantics.
• Complex control flow in non-contiguous structures. Even with precise API mappings,
migration often requires changes in multiple locations. The migration task often requires replac-
ing multiple API invocations interwoven in complex code structures such as loops, conditional
branches, and layers of implicit and explicit function calls due to abstraction and encapsulation.
• Entangled value flows surrounding API invocation sites. To ensure the migrated program
is correct, the synthesized code must fit seamlessly into the existing codebase. It should pass
the correct incoming variables and expressions to the new APIs and assign the new API return
values to the correct outgoing variables, which requires an appropriate approximation of the
meanings of existing variables that may involve both intra- and inter-procedural contexts.
Thus, techniques based on string replacements or local transformations [20, 23, 35, 46, 53, 59, 75,

77, 90] are inadequate for ensuring the correctness of migration across diverse APIs and codebases.

1.2 Our Approach
We aim to bridge the gap in migrating software across different I/O APIs by proposing a novel
automated technique based on static analysis. Our approach builds on the following key ideas:
• Decomposing API semantics into atomic operations. To map APIs with slightly different
semantics, we decompose API functionality into atomic operations. This decomposition enables
fine-grained control to align APIs through overlapping operations and synthesizes new expres-
sions and statements to handle discrepancies. We focus on ensuring behavioral equivalence,
disregarding minor mismatches in corner cases that can be tolerated.
• Simplifying complex code structures. To make the migration task tractable, we preprocess
the original program by simplifying loops and collapsing layers of aliased functions to reduce
the complexity of the code structures often found in real-world codebases.
• Approximating value flows and semantic types based on pointer analysis. To reason
about the meanings of existing variables, we approximate the value flows by employing a flow-

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 293. Publication date: October 2025.



A Sound Static Analysis Approach to I/O API Migration 293:3

Dependency-​

Driven 

Synthesis

Pre-​Processing

Loop 

Simplification

Function 

Alias 

Detection

Atomic and

Composite

Functions

Migrated

Program

State Inference

Path

Enume-

ration

Typestate

Analysis

FSM 

Construction

Flow-​Sensitive 

Pointer Analysis

Matching

Code Fragments

and Variables

Semantic

Variable

Context

Original

Program

API Expert

Compi-

lation

Over-

approximated

Value-​Flow

Graph

Value-​Flow Graph

Construction

Parser 

Construction

LLVM IR

API Semantics

API

Sketch

Fig. 1. Overview of the Sprout workflow. Parser construction, loop simplification, and FSM construction are
customizable for other application domains (discussed later in Sec. 6.4).

and field-sensitive pointer analysis to identify semantic variables intra-procedurally, along with
Andersen’s pointer analysis to over-approximate value flows inter-procedurally [82].
We instantiate these ideas in a tool named Sprout. The design of Sprout consists of four stages:

compilation, pre-processing, state inference, and synthesis (Fig. 1). The compilation stage compiles
the original program source code into LLVM IR [45] to construct the over-approximated value-flow
graph [83], then parses the expert-provided specifications into API semantics and sketches. The
pre-processing stage performs loop simplification (Sec. 5.1.1) and function alias detection (Sec. 5.1.2).
The state inference stage enumerates paths in composite functions (Def. 5.8), using a flow-sensitive
pointer analysis to identify semantic variables (Sec. 4.1). It then constructs a finite state machine
(FSM) from the parsed API semantics (Sec. 5.2.1) and performs typestate analysis [24, 81] for the
enumerated paths (Sec. 5.2.3). Finally, Sprout uses the identified code fragments and variables to
synthesize a migrated program (Sec. 5.3) that is equivalent to the original program (Sec. 5.4).

1.3 Contributions
We highlight the following contributions in this paper:
• Formalization.We formalize the migration problem and introduce the concept of behavioral
equivalence. We also formalize the I/O behavior of APIs and use it to specify the semantics of a
range of traditional POSIX APIs and modern I/O APIs.
• Algorithm.We present a novel and sound algorithm for migrating programs to use different I/O
APIs. The algorithm is based on static analysis and involves reasoning about the I/O behavior of
programs, identifying semantic variables, inferring I/O states, and synthesizing new code.
• Experimental results. We implement a prototype for Sprout and evaluate it using a range
of real-world open-source C programs. The experimental results indicate that our algorithm is
both efficient and effective in enabling automated migration.
• Generalization.We adapt our Sprout implementation to work with the domain of database
access APIs, which highlights the generality of our core approach.
To the best of our knowledge, Sprout represents the first approach capable of automatically

migrating stateful, non-contiguous multi-API invocations with formal correctness guarantees.

2 Motivating Example
Consider the problem of migrating programs that originally read files through POSIX APIs to
instead read files through the get API proposed by Aerie [88] and ArckFS [96].

API Specification. An expert provides the specification and sketch for the get API as shown in
Fig. 3a. It specifies that get initially establishes a connection to the file specified by arg0 (Line 3),
transfers the entire contents of the file into the buffer arg1 (Line 4), disconnects from the file
(Line 5), and finally returns the size transferred (Line 6). The sketch on Line 9 specifies how to
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1 struct stat statbuf;
2 - fd = Uopen(ss, O_RDONLY , 0);
3 - if (fd < 0) {
4 - *log_msgptr = string_sprintf("failed␣to

␣open␣ACL␣file␣\"%s\":␣%s", ss, strerror(
errno));

5 - return ERROR;
6 - }
7 - int flag = fstat(fd, &statbuf);
8 if (flag != 0) {
9 *log_msgptr = string_sprintf("failed␣to␣

fstat␣ACL␣file␣\"%s\":␣%s", ss,
strerror(errno));

10 return ERROR;
11 }
12 acl_text=store_get(statbuf.st_size+1,ss);
13 acl_text_end=acl_text+statbuf.st_size +1;
14 - size_t bytes = read(fd, acl_text , statbuf

.st_size);

15 if (bytes != statbuf.st_size) {
16 *log_msgptr = string_sprintf("failed␣to␣

read␣ACL␣file␣\"%s\":␣%s", ss, strerror
(errno));

17 return ERROR;
18 }
19 acl_text[statbuf.st_size] = 0;
20 - (void)close(fd);
21 acl_name=string_sprintf("ACL␣\"%s\"",ss);

(a) Function body extracted from Exim.

1 struct stat statbuf;

2 + int flag = stat(ss, &statbuf);
3 if (flag != 0) {
4 *log_msgptr = string_sprintf("failed␣to␣

fstat␣ACL␣file␣\"%s\":␣%s", ss,
strerror(errno));

5 return ERROR;
6 }
7 acl_text=store_get(statbuf.st_size+1,ss);
8 acl_text_end=acl_text+statbuf.st_size +1;
9 + size_t bytes = 0;
10 + if (! is_tainted(ss)) {
11 + bytes = get(ss, acl_text);
12 + }
13 if (bytes != statbuf.st_size) {
14 *log_msgptr = string_sprintf("failed␣to␣

read␣ACL␣file␣\"%s\":␣%s", ss, strerror
(errno));

15 return ERROR;
16 }
17 acl_text[statbuf.st_size] = 0;

18 acl_name=string_sprintf("ACL␣\"%s\"",ss);

(b) Function body migrated by Sprout.
Fig. 2. Sprout migrates a function from Exim [27] to use the get API instead of POSIX APIs.

1 int get(const char *path , void* buf) {
2 ParamType: (arg0:FilePath ,arg1:Buffer);
3 Semantics: {f=connect_file(arg0 ,Read),
4 n=transfer(f,0,f.size ,arg1 ,0),
5 disconnect(f)};
6 Return: n:SizeTransferred;
7 }
8 Sketch: {
9 Sketch 1: size_t #0 = get(#1, #2);
10 }

(a) API specification for the get API proposed by
Aerie [88] and ArckFS [96].

𝑆0start 𝑆1 𝑆2 𝑆3

𝑆4

⟨𝑘connect,
{𝑔Permission}⟩

⟨𝑘transfer,
{𝑔FdConsistency,
𝑔Flow, 𝑔Offset,

𝑔Size, 𝑔Loop}⟩

⟨𝑘disconnect,
{𝑔FdConsistency,
𝑔Loop}⟩

⟨𝑘non-core, ∅⟩
⟨𝑘non-core, ∅⟩,
⟨𝑘transfer, {¬𝑔FdConsistency}⟩

⟨𝑘non-core, ∅⟩,
⟨𝑘transfer, {¬𝑔FdConsistency}⟩

Otherwise
Otherwise

Otherwise

(b) Sprout constructs an I/O FSM based on Fig. 3a.

1 int open(const char* path , int oflag ,...) {
2 ParamType :(arg0:FilePath ,
3 arg1:FilePermission);
4 Semantics :{f=connect_file(arg0 , arg1)};
5 Return: f:FileDescriptor;
6 }

(c) API specification for POSIX open.

1 static inline int exim_open(const char*
pathname , int flags , mode_t mode) {

2 if (! is_tainted(pathname))
3 return open(pathname , flags , mode);
4 log_write( ... );
5 errno = EACCES; return -1; }

(d) Function in Exim that is aliased with open under
the liftable conditional !is_tainted(arg0).

1 int exim_open(const char* pathname , int flags , mode_t mode) {
2 ParamType :(arg0:FilePath , arg1:FilePermission);
3 Condition: {! is_tainted(arg0);}
4 Semantics :{f=connect_file(arg0 , arg1)};
5 Return: f:FileDescriptor;
6 }

(e) Sprout infers the semantics of exim_open (Fig. 3d).

1 size_t #0;
2 if (! is_tainted (#3)) {
3 #0 = get(#1, #2);
4 }

(f) Sprout inserts a sketch to
prepare for synthesis.

Fig. 3. Example specifications, state machine, aliased function, and sketch. The third parameter of open is
omitted for simplicity, as it is optional and specifies the permission mode for file creation [29].
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invoke the get API within the program. The placeholders #0, #1, and #2 represent holes, indicating
that get requires two input parameters and stores its return value in an integer variable.

Original Program. Fig. 2a presents a code snippet extracted from a function in the Exim email
server [27]. This function first opens a file using the Uopen macro (Line 2), then reads the file into a
buffer by invoking read (Line 14), and finally closes the file with close (Line 20). This function is
not straightforward to migrate by hand. One reason is that there are various conditional branches
that perform tasks such as error handling and file status checking, interspersed throughout the
function, making the code difficult to understand and modify. Another reason is that the file opening
operation is not directly visible in the current function but nested in a macro, which invokes a
wrapper function named exim_open (see Fig. 3d), which further invokes the open API with even
more conditional checks. These complications make the file open, read, and close operations
separated in the source code and difficult to reason about as a whole.

Simplifying Aliased Functions. Sprout analyzes the original program to characterize the
function semantics that indirectly invoke POSIX APIs. In this example, Sprout determines that
the function exim_open(arg0,arg1) is aliased with the POSIX open under the liftable condition
!is_tainted(arg0) (discussed later in Def. 5.4). Because the POSIX open has the semantics as in
Fig. 3c, Sprout infers that the semantics of the exim_open function is as in Fig. 3e.

Identifying Behaviorally Equivalent Statements. Based on the specification in Fig. 3a,
Sprout constructs a finite state machine as shown in Fig. 3b (discussed later in Ex. 5.11), which
accepts behaviors equivalent to those emitted by get as specified in Fig. 3a. Sprout then enumerates
all behavior paths 𝐵 in the behavior tree of the program, where 𝐵 goes through the function, to match
the FSM in Fig. 3b. In Fig. 2a, the code fragment “fd = Uopen(ss,O_RDONLY,0)” emits a behavior
node 𝛽1 = 𝛼1 , where 𝛼1 = 𝑣 ← connect_file(𝑣1, 𝑣2) (discussed later in Def. 4.2), causing the FSM
to transition from state 𝑆0 to 𝑆1. The code fragment “read(fd,acl_text,statbuf.st_size)” emits
a behavior node 𝛽2 = 𝛼2 , where 𝛼2 = 𝑣 ← transfer(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5), causing a transition from
state 𝑆1 to 𝑆2. Finally, “close(fd)” emits a behavior node 𝛽3 = 𝛼3 , where 𝛼3 = disconnect(𝑣1),
causing a transition from state 𝑆2 to the accept state 𝑆3.

Synthesizing the Migrated Program. Once the FSM accepts the behavior, Sprout inserts the
extracted conditions into the sketch to obtain Fig. 3f. Hole #3 is expected to contain a variable of
type 𝜏FilePath according to Fig. 3e. Next, Sprout collects the minimal accepting code fragments,
specifically those on Lines 2, 14, and 20, and the semantic variable context. Sprout removes the
minimal accepting code fragments and replaces them with the sketch (discussed later in Alg. 3). In
particular, Sprout inserts the sketch at the first original statement that emits the behavior node
𝛽 = 𝛼 where 𝛼 is a transfer operation—the core goal of various I/O APIs—which is the call to
read (Line 14). To fill in the holes, Sprout infers their semantic types (discussed later in Def. 3.2)
based on the specification in Fig. 3a. In this example, hole #0 has the semantic type 𝜏SizeTransferred,
hole #1 has type 𝜏FilePath, and hole #2 has type 𝜏Buffer. Based on these semantic types, Sprout
searches for candidate semantic variables in the semantic variable context to fill in the holes.

Removing the original statements causes cascading changes to the code. Since Line 2 is removed,
variable fd no longer holds the original value, which requires changes to Line 3 and Line 7. Sprout
identifies these affected locations by tracking the value flows [84] and generates a new sketch for
each such location. For Line 3, since the expression fd < 0 represents an I/O error, the sketch
simply removes the error-handling branch (discussed later in Def. 4.13). Line 7, on the other hand,
emits behavior that needs to be preserved in the migrated program. Sprout searches among the
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user-provided APIs and the existing POSIX APIs to identify one that emits behavior equivalent to
fstat but does not rely on fd. The resulting migrated code invokes stat as the replacement.
After synthesis, Sprout produces the migrated function in Fig. 2b. It differs from the original

function in Fig. 2a in several places: (1) The original invocations to Uopen (Line 2), read (Line 14),
close (Line 20), and fstat (Line 7), along with the error-handling branch on Lines 3–6, have
all been removed; (2) the synthesized code in Fig. 2b contains an invocation to stat (Line 2), an
invocation to get (Line 11), auxiliary code based on the sketch (Lines 9–12), and a liftable condition
extracted from exim_open (Line 10). By using the get API instead of POSIX APIs to perform I/O,
the migrated program is expected to exhibit improved execution speed [88, 96].

3 Syntax of Core Language & Specification
Sprout works with programs written in a subset of C. We present formal notation for precisely
specifying the semantics of I/O APIs and for reasoning about the correctness of migration.

Definition 3.1 (Abstract Syntax of Programs). Fig. 4 presents the abstract syntax of function
definitions of an LLVM-like language that Sprout works with. A program 𝑝 is a set of function
definitions. A function definition𝑑 implements a user function𝑦with a list of parameters 𝑣1, . . . 𝑣𝑛 and
a block𝑏 as the function body. A block 𝑏 is empty (Empty) or consists of statements (Single Statement),
sequential structures (Sequential), conditional structures (Conditional), and loop structures (Loop).
An evaluation statement assigns the result of the expression 𝑒 to the variable 𝑣 (Evaluation). An
address statement creates a new abstract object 𝑜 and assigns its address to the variable 𝑣 (Address).
A Get Element Pointer (GEP) statement points the variable 𝑣 to the data field named 𝑐field in the
abstract object 𝑜 , where the variable 𝑣 ′ points to 𝑜 (GEP). A load statement retrieves the data from
the address stored in the variable 𝑣 ′ and assigns the data to the variable 𝑣 (Load). A store statement
assigns the data stored in the variable 𝑣 ′ to the address stored in the variable 𝑣 (Store). A Phi
statement assigns the value of variable 𝑣𝑖 to the variable 𝑣 when the control flow’s predecessor
block label is 𝜄𝑖 (Phi). A call statement invokes another function 𝑦 with the parameters 𝑣1, . . . , 𝑣𝑛
and stores the return value in the variable 𝑣 (Call). Function calls cannot be recursive. A return
statement terminates the function and returns the value stored in the variable 𝑣 (Return). An
expression 𝑒 is either a literal 𝑐 (Constant), a variable 𝑣 (Variable), or the computational results of an
operation on sub-expression(s) (Unary Operation and Binary Operation).

In programs that invoke I/O APIs, variables often store values from several known categories,
which we refer to as semantic types. For example, an int variable may represent the size of
transferred data, a buffer size, an offset, or a file descriptor. Additionally, such a variable may hold
values of different semantic types over its lifespan. Sprout leverages this insight to enhance the
efficiency of the analysis and synthesis algorithms and to ensure the soundness of migration.

Definition 3.2 (Semantic Types). A semantic type 𝜏𝑖 is a type annotation for a variable 𝑣𝑖 . Each
semantic type falls into one of the following categories:
• FileDescriptor: Identifier for a system resource, used to perform I/O operations.
• Buffer:Memory region designated for storing data during I/O operations.
• SizeToTransfer: Number of bytes to read from or write to a resource.
• SizeTransferred: Number of bytes successfully read or written to a file or stream.
• ErrorFlag: Integer that signals the occurrence of an error during I/O operations.
• Offset: Position within a file, often used to specify where to begin reading or writing.
• FileInfo:Metadata about a file that provides essential details for management of the file.
• FileSize: The total amount of bytes in a file that a file descriptor points to.
• FilePath: A string that denotes the file’s location within the file system.
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𝑑 F func 𝑦 (𝑣1, . . . , 𝑣𝑛 ) {𝑏} (Function Definition)

𝑏 F 𝜀 (Empty)
| 𝑠 (Single Statement)
| 𝑏1;𝑏2 (Sequential)
| if (𝑒 ) {𝑏1} else {𝑏2} (Conditional)
| while (𝑒 ) {𝑏} (Loop)

𝑠 F 𝑣 ← 𝑒 (Evaluation)
| 𝑣 ← new 𝑜 (Address)

| 𝑣 ← &(𝑣′ → 𝑐field ) (GEP)

| 𝑣 ← ∗𝑣′ (Load)

| ∗𝑣 ← 𝑣′ (Store)
| 𝑣 ← Φ(𝜄1 : 𝑣1, . . . , 𝜄𝑛 : 𝑣𝑛 ) (Phi)
| 𝑣 ← call 𝑦 (𝑣1, . . . , 𝑣𝑛 ) (Call)
| return 𝑣 (Return)

𝑒 F 𝑐 (Constant)
| 𝑣 (Variable)
| ⊙ 𝑒 (Unary Operation)
| (𝑒1 ⊕ 𝑒2 ) (Binary Operation)

𝑑 ∈ FunctionDefinitions 𝑦 ∈ FunctionNames

𝑏,𝑏1, 𝑏2 ∈ Blocks 𝑠 ∈ Statements

𝑒 ∈ Expressions 𝑐, 𝑐field ∈ Literals ⊆ AbstractObjects

𝑜 ∈ AbstractObjects 𝑣, 𝑣′, 𝑣1, . . . , 𝑣𝑛 ∈ Variables
𝜄1, . . . , 𝜄𝑛 ∈ BlockLabels ⊙ ∈ {−,∼,¬}

⊕ ∈ Arithmetic ∪ Comparors ∪ Bitwise ∪ Logical

Fig. 4. Abstract syntax of function definitions,
adapted from FGS [7].

𝜓 F spec 𝑦 (𝑣1 : 𝜏1, . . . , 𝑣𝑛 : 𝜏𝑛 ) : 𝜏return {𝜒 }
(Behavioral Specification)

𝜒 F 𝜀 (Empty)
| 𝛼 (Single)
| 𝛼 ; 𝜒 (List)

𝛼 F 𝑣buffer ← alloc(𝑣size ) (Allocate)
| 𝑣handle ← connect_file(𝑣name, 𝑣perm )

(Connect File)
| 𝑣handle ← connect_pipe( ) (Connect Pipe)
| 𝑣handle ← connect_socket( )

(Connect Socket)
| disconnect(𝑣handle ) (Disconnect)
| move_offset(𝑣handle, 𝑣offset ) (Move Offset)
| 𝑣offset ← query_offset(𝑣handle )

(Query Offset)
| 𝑣size_transferred ← transfer(𝑣location_src, 𝑣offset_src,

𝑣size_to_transfer, 𝑣location_dst, 𝑣offset_dst )
(Transfer)

| return 𝑣 (Return)

𝜓 ∈ BehavioralSpecifications 𝑦 ∈ FunctionNames

𝜏1, . . . , 𝜏𝑛, 𝜏return ∈ SemanticTypes

𝜒 ∈ OperationSequences 𝛼 ∈ AtomicOperations

𝑣, 𝑣1, . . . , 𝑣𝑛, 𝑣buffer, 𝑣handle, 𝑣name, 𝑣offset, 𝑣size,

𝑣size_transferred, 𝑣location_src, 𝑣offset_src,

𝑣location_dst, 𝑣offset_dst, 𝑣size_to_transfer ∈ Variables

Fig. 5. Abstract syntax of behavioral specifica-
tions for I/O APIs.

Another key insight is that the primary concern in I/O operations is ensuring the correct amount
of data is transferred between specific locations. We therefore design a specification language that
enables reasoning about the data and locations associated with I/O operations.

Definition 3.3 (Abstract Syntax of Specifications). Fig. 5 presents the abstract syntax of the specifi-
cation for the functionality of I/O APIs and relevant memory operations. A specification suite 𝜚 is a
set of behavioral specifications. A behavioral specification𝜓 specifies the functionality of an API
function 𝑦 as a sequence of I/O operations 𝜒 . The API function takes 𝑣1, . . . , 𝑣𝑛 as parameters. Each
parameter 𝑣𝑖 has a semantic type 𝜏𝑖 . The API returns a value of semantic type 𝜏return. An operation
sequence 𝜒 contains a sequence of atomic operations. An atomic operation 𝛼 may allocate an array
with the length of 𝑣size and assign its pointer to 𝑣buffer (Allocate), open a file named 𝑣name with
permission 𝑣perm and assign the file descriptor to 𝑣handle (Connect File), open a pipe or a socket
and assign the file descriptor to 𝑣handle (Connect Pipe and Connect Socket), close the resource
associated with the file descriptor 𝑣handle (Disconnect), set the offset of the cursor for file 𝑣handle as
𝑣offset (Move Offset), get the offset of the cursor for file 𝑣handle and assign it to 𝑣offset (Query Offset),
transfer at most 𝑣size_to_transfer bytes from a source location 𝑣location_src starting at position 𝑣offset_src
to a destination location 𝑣location_dst starting at position 𝑣offset_dst—a location can be a buffer or a
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resource indicated by a file descriptor—and assign the number of bytes that are actually transferred
to 𝑣size_transferred (Transfer), or terminate the API function with a return value 𝑣 (Return).

In a well-formed program, each function definition and specification declares a function with
a distinct function name. Therefore, 𝑝 is equivalent to a partial map from FunctionNames to
FunctionDefinitions. In addition, 𝜚 is also equivalent to a partial map from FunctionNames to
BehavioralSpecifications. That is,𝑝 (𝑦) ∈ FunctionDefinitions and 𝜚 (𝑦) ∈ BehavioralSpecifications.

Let dom(𝑝) and dom(𝜚 ) represent the sets of function names that are defined in 𝑝and 𝜚 , respec-
tively. We have dom(𝑝) ∩ dom(𝜚 ) = ∅.

Example 3.4. Fig. 3a presents an example specification𝜓 . The function name𝑦 is get (Line 1). The
parameters 𝑣1 and 𝑣2 are arg0 and arg1, with semantic types 𝜏1 = 𝜏FilePath and 𝜏2 = 𝜏Buffer, respec-
tively (Line 2). The return type is 𝜏return = 𝜏SizeTransferred (Line 6). The operation sequence 𝜒 consists of
the following atomic operations: f=connect_file(arg0,Read), n=transfer(f,0,f.size,arg1,
0), disconnect(f), and return n (Lines 3–6).

Definition 3.5 (Non-essential Functions). A non-essential function 𝑦𝑛 is a function that performs
only auxiliary tasks and is not crucial to the core functionality of the program.

Example non-essential functions may perform logging, printing, or memory initialization.
In a well-formed program, the function in each call statement is distinctly a user function from a

function definition 𝑑 , an API function from a behavioral specification𝜓 , or a non-essential function.
That is, dom(𝑝) ∪ dom(𝜚 ) ∪ 𝑌𝑛 ⊇ called(𝑝) where called(𝑝) ⊆ FunctionNames is the set of all
function names that appear in a call statement in the program 𝑝 , and𝑌𝑛 is a finite set of non-essential
functions that may be used in the program.

Definition 3.6 (Program Context). A program context 𝑃 = ⟨𝑝, 𝜚, 𝑌𝑛⟩ is a tuple of a program 𝑝 ,
a specification suite 𝜚 , and a set of non-essential functions 𝑌𝑛 . It is equivalent to a map from
each function name 𝑦 ∈ called(𝑝) \ 𝑌𝑛 to either a function definition 𝑑 = 𝑝 (𝑦) or a behavioral
specification𝜓 = 𝜚 (𝑦), i.e. 𝑃 (𝑦) ∈ FunctionDefinitions ∪ BehavioralSpecifications.

4 Formalizing I/O Behaviors
We introduce notation for reasoning about behavioral equivalence of the migrated programs.

4.1 I/O Behaviors of Programs
Definition 4.1 (Intermediate States). An intermediate state 𝜎 = ⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ⟩

consists of six parts:
(1) The pointer analysis result 𝜎PTR : Variables ⇀ Variables ∪ AbstractObjects.
• 𝑣 ↦→ 𝑣 ′ denotes that the variable 𝑣 is a pointer that points to another variable 𝑣 ′.
• 𝑣 ↦→ 𝑜 denotes that the variable 𝑣 is a pointer that points to an abstract object 𝑜 .

(2) The object field map 𝜎OFM : AbstractObjects × FieldNames ⇀ Variables ∪ AbstractObjects,
where FieldNames ⊆ Literals. The object field map is used mainly to handle the GEP operation.
• 𝑜.𝑐field ↦→ 𝑣 denotes that the field indicated by 𝑐field of the object 𝑜 is not an object but equivalent
to a variable 𝑣 . Thus, the GEP operation returns a pointer to 𝑣 .
• 𝑜.𝑐field ↦→ 𝑜 ′ denotes that the field indicated by 𝑐field of the object 𝑜 is another object 𝑜 ′, so the
GEP operation returns a pointer to 𝑜 ′.

(3) The semantic typing map 𝜎STM ⊆ Variables × SemanticTypes. For each pair ⟨𝑣, 𝜏⟩ ∈ 𝜎STM,
the variable 𝑣 has the semantic type 𝜏 . It annotates a program variable with some predefined
semantics to facilitate the analysis and synthesis in Sec. 5. A variable may have more than one
semantic type. For example, an integer variable may simultaneously have two semantic types
𝜏size and 𝜏offset in a single semantic typing map.
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(4) The file offset map 𝜎FOM : FileDescriptiors ⇀ AbstractObjects ∪ Unknown, where FileDes-
criptors ⊆ AbstractObjects. The file offset map records the cursor offset for each connected file
descriptor, where the offset is either a known value, which is represented by an abstract object
𝑜 , or is unknown. It enables Sprout to determine the file offsets of file descriptors associated
with different aliased variables by using the atomic operations defined in Move Offset and Query
Offset, along with 𝜎PTR.

(5) The loop context 𝜎LC ∈ LoopContexts, where LoopContexts = {⊥} ∪ {⟨𝜄𝑏, 𝜎LC⟩ | 𝑏 ∈ Blocks ∧
𝜎LC ∈ LoopContexts}. The loop context is a stack where each element represents a nesting
loop to which the intermediate state belongs. 𝜎LC = ⊥ indicates that the stack is empty so the
intermediate state is not in any loop. 𝜎LC = ⟨𝜄𝑏, 𝜎 ′LC⟩ indicates that 𝑏 is the loop at the top of
the stack, which is the closest loop, and the tail of the stack is 𝜎 ′LC. 𝜄𝑏 is a unique label of the
loop block 𝑏. Such labels are unique for each block in the program. For those blocks that are
syntactically identical but appear in different positions, their labels are distinct.

(6) The Phi context 𝜎Φ ∈ {𝜄𝑏 ∈ BlockLabels | 𝑏 = 𝑠}, where 𝜎Φ = 𝜄𝑠 indicates that the last executed
statement in the behavior path is 𝑠 . The Phi context is used to evaluate the Phi statement.

Definition 4.2 (Behavior Trees). A behavior tree 𝜂 describes the I/O behavior of a program 𝑝 and
is composed of a set of behavior nodes. A behavior node 𝛽 may be one of the following:
• A begin node ⊤ , which is the root of the behavior tree and represents the program entry.
• An end node ⊥ , which is the only kind of leaf nodes in the behavior tree and represents the
program termination.
• A statement node 𝑠 , which represents a non-call statement 𝑠 that does not emit I/O operation.
• An operation node 𝛼 , which represents an atomic operation 𝛼 emitted by a call statement that
calls a function 𝑦 ∈ dom(𝜚 ) in the program 𝑝 .
• A branching node 𝑒 , which represents a condition expression 𝑒 . The branching node is the
only kind of internal node that has two children, which are the successors when 𝑒 is evaluated
to true and false, respectively. All other internal nodes, including statement nodes, operation
nodes, loop entry nodes, and loop exit nodes, all have one single child.
• A loop entry node 𝑏 , which represents the start of the body of a loop block 𝑏. It pushes the
label 𝜄𝑏 of the loop block into the loop context in the intermediate state.
• A loop exit node 𝑏 , which represents the end of the body of a loop block 𝑏. It pops the label 𝜄𝑏
from the loop context. Loop entry and exit nodes always appear in pairs in a behavior path.

For notation convenience, 𝜂 denotes a sub-tree of a behavior tree. For a behavior node 𝛽 that is
not a branching node, 𝛽𝜂 denotes a behavior (sub-)tree where the root node is 𝛽 and root node of
the sub-tree 𝜂 is the only child of 𝛽 .

Definition 4.3 (Construction of Behavior Trees). Given a program context 𝑃 = ⟨𝑝, 𝜚, 𝑌𝑛⟩, consider
a block 𝑏 whose successor emits the behavior sub-tree 𝜂. ⟨𝑝, 𝜚, 𝑌𝑛⟩ ⊢ 𝑏, 𝜂 { 𝜂′ denotes that the
behavior sub-tree emitted by both the block 𝑏 and its successor combined is 𝜂′.
Given a program context 𝑃 = ⟨𝑝, 𝜚, 𝑌𝑛⟩, entry(𝑝) denotes the body block of the entry func-

tion in the program 𝑝 . When executing from entry(𝑝) to termination emits 𝜂′, i.e. ⟨𝑝, 𝜚, 𝑌𝑛⟩ ⊢
entry(𝑝), ⊥ { 𝜂′, the behavior tree of the program is 𝜂 = ⊤ 𝜂′.

Intuitively, the behavior tree of the program 𝑝 consists of the root node ⊤ and the sub-tree
emitted by the entry function body entry(𝑝). Since the program terminates after executing the
entry function body, the successor sub-tree 𝜂 to construct the sub-tree of entry(𝑝) is ⊥ , which
indicates the program termination.
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Example 4.4. Consider a program whose entry function body is as in Fig. 9a, which was extracted
from Exim [27]. Given the specification of read in Fig. 9f, the behavior tree of Fig. 9a is Fig. 9b.

Definition 4.5 (Behavior Paths). A behavior path 𝐵 ∈ 𝜂 is a path from the root node (begin node)
to a leaf node (end node) in a behavior tree 𝜂.

s0: *len = len0;

...

s1: len1 = *len;

s2: ret = read(fd,buf ,len1);

s3: *bytes = ret;

...

s4: bytes1 = *bytes;

s5: len2 = *len;

len0

len1

len2

ret

bytes1

len

bytes

𝑜1

𝑜2

𝜏SizeToTransfer

𝜏SizeTransferred

s1
(Load)

s5
(Load)

s4
(Load)

s0
(Store)

s3
(Store)

s2
(Transfer)

s2
(Transfer)

Fig. 6. Semantic types of variables in the intermediate state.

For notation convenience, 𝐵 may
also denote a continuous sub-path
of a behavior path.

Definition 4.6 (Path Conditions).
For a behavior path 𝐵, the path con-
dition of 𝐵 is an expression cond(𝐵)
such that the program will execute
along the path 𝐵 iff cond(𝐵) is sat-
isfied. Let 𝑒1 . . . 𝑒𝑛 ∈ 𝐵 be the

branching nodes in 𝐵 where the path takes their true branches. Let 𝑒′1 . . . 𝑒′𝑚 ∈ 𝐵 be the branch-
ing nodes in 𝐵 where the path takes their false branches. The path condition of the behavior path 𝐵

is cond(𝐵) =
(∧𝑛

𝑖=1 𝑒𝑖
)
∧
(∧𝑚

𝑗=1 ¬ 𝑒′𝑗
)
.

Definition 4.7 (Core Operations). Atomic operations directly involved in I/O and resource lifes-
pan management, including connect_file, connect_pipe, connect_socket, disconnect, and
transfer, are classified as core operations. An operation node 𝛼 where 𝛼 is a core operation is a
core operation node. Other behavior nodes 𝛽 are classified as non-core operation nodes.

Definition 4.8 (Behavior Node Kinds). For each core operation node 𝛼 , its behavior node kind 𝑘 is
the operation kind of 𝛼 , which may be 𝑘connect_file, 𝑘connect_pipe, 𝑘connect_socket, 𝑘disconnect, or 𝑘transfer.
The behavior node kind of any non-core operation node is 𝑘non-core.

Definition 4.9 (Evaluation of Intermediate States). Fig. 7 presents the inference rules for evaluating
intermediate states along behavior paths. 𝜎, 𝛽 ⇓ 𝜎 ′ denotes that given a behavior node 𝛽 and the
intermediate state 𝜎 before 𝛽 , the intermediate state after 𝛽 is 𝜎 ′.

Remark 4.10. The behavior tree fully determines the intermediate state between any two adjacent
behavior nodes according to the rules in Def. 4.9.

Example 4.11. Fig. 6 presents an intermediate state after evaluating statements on the left. On the
right, each node represents an abstract object (yellow) or a variable (white). Solid lines represent
the points-to relations and dashed lines represent the semantic types of variables. The labels on the
edges represent the statements and the rules in Fig. 7 that Sprout uses to establish the relation.
Based on the intermediate state, Sprout deduces that the variable len2 shares the semantic type
𝜏SizeToTransfer with len1 since both of them point to the same abstract object 𝑜1. Similarly, bytes1 is
aliased with ret and is thus inferred to share the semantic type 𝜏SizeTransferred with ret.

4.2 API Migration Problem
As outlined in Fig. 1, Sprout takes the following inputs to perform migration: the original program
𝑝1 and its compiled LLVM IR containing debug information, the specification suite 𝜚1 for the
existing I/O APIs in 𝑝1, and the specification suite 𝜚2 for the new I/O APIs. Sprout modifies 𝑝1
to produce a migrated program 𝑝2 that is behaviorally equivalent to 𝑝1. We formalize the API
migration problem below and present Sprout’s algorithms in Sec. 5.
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𝑠 = 𝑣 ← new 𝑜 𝜎 ′PTR = 𝜎PTR [𝑣 ↦→ 𝑜 ]
⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝑠 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩

(New)

𝑠 = 𝑣 ← &(𝑣′ → 𝑐field ) 𝑜 = 𝜎PTR (𝑣′ ) 𝑜field = 𝜎OFM (𝑜, 𝑐field ) 𝜎 ′PTR = 𝜎PTR [𝑣 ↦→ 𝑜field ]
⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝑠 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩

(GEP Object)

𝑠 = 𝑣 ← ∗𝑣′ 𝑣target = 𝜎PTR (𝑣′ ) 𝜎 ′PTR = 𝜎PTR [𝑣 ↦→ 𝜎PTR (𝑣target ) ]
𝜎 ′STM = 𝜎STM ∪ {⟨𝑣, 𝜏 ⟩ | ⟨𝑣target, 𝜏 ⟩ ∈ 𝜎STM}

⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝑠 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎
′
STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩

(Load)

𝑠 = ∗𝑣 ← 𝑣′ 𝑣target = 𝜎PTR (𝑣) 𝜎 ′PTR = 𝜎PTR [𝑣target ↦→ 𝜎PTR (𝑣′ ) ]
𝜎 ′STM = 𝜎STM ∪ {⟨𝑣target, 𝜏 ⟩ | ⟨𝑣′, 𝜏 ⟩ ∈ 𝜎STM}

⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝑠 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎
′
STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩

(Store)

𝛼 = 𝑣handle ← connect_file(𝑣name, 𝑣perm ) 𝑜 is a fresh object 𝜎 ′PTR = 𝜎PTR [𝑣handle ↦→ 𝑜 ]
𝜎 ′STM = 𝜎STM ∪ {⟨𝑣handle, 𝜏FileDescriptor ⟩, ⟨𝑣name, 𝜏FilePath ⟩} 𝜎 ′FOM = 𝜎FOM [𝑜 ↦→ 0]
⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝛼 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎

′
STM, 𝜎

′
FOM, 𝜎LC, 𝜎Φ ⟩

(Connect File)

𝛼 = disconnect(𝑣handle ) ⟨𝑣handle, 𝜏FileDescriptor ⟩ ∈ 𝜎STM
𝑜 = 𝜎PTR (𝑣handle ) 𝜎 ′FOM = 𝜎FOM [𝑜 ↦→ null]

⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝛼 ⇓ ⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎 ′FOM, 𝜎LC, 𝜎Φ ⟩
(Disconnect)

𝛼 = 𝑣size_transferred ← transfer(𝑣location_src, 𝑣offset_src, 𝑣size_to_transfer, 𝑣location_dst, 𝑣offset_dst )
𝑜 is a fresh object 𝜎 ′PTR = 𝜎PTR [𝑣size_transferred ↦→ 𝑜 ]

𝜎 ′STM = 𝜎STM ∪ {⟨𝑣size_transferred, 𝜏SizeTransferred ⟩, ⟨𝑣size_to_transfer, 𝜏SizeToTransfer ⟩}
⟨𝜎PTR, 𝜎OFM, 𝜎STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩, 𝛼 ⇓ ⟨𝜎 ′PTR, 𝜎OFM, 𝜎

′
STM, 𝜎FOM, 𝜎LC, 𝜎Φ ⟩

(Transfer)

Fig. 7. Representative inference rules for evaluation of intermediate states.

𝐵1 = 𝛼1 𝜎1 = the intermediate state before 𝛼1
𝐵2 = 𝛼2 𝜎2 = the intermediate state before 𝛼2

∀ corresponding variables 𝑣1, 𝑣2 in 𝛼1, 𝛼2, 𝜎PTR
1 (𝑣1 ) = 𝜎PTR

2 (𝑣2 )
𝐵1 ≡ 𝐵2

𝐵1 = 𝛽
𝛽 is not an operation node

𝐵2 = 𝜀

𝐵1 ≡ 𝐵2 𝐵2 ≡ 𝐵1

𝐵1 ≡ 𝐵2
𝐵3 ≡ 𝐵4

𝐵1𝐵3 ≡ 𝐵2𝐵4
Fig. 8. Big-step inference rules of the equivalence between two behavior sub-paths.

Definition 4.12 (Equivalence between Behavior Paths). 𝐵1 ≡ 𝐵2 denotes that two behavior paths 𝐵1
and 𝐵2 are behaviorally equivalent. Fig. 8 presents the big-step inference rules of the equivalence
between two behavior sub-paths.

Definition 4.13 (Equivalence between Behavior Trees). Two behavior trees 𝜂1 and 𝜂2 are behav-
iorally equivalent iff∀𝐵1 ∈ 𝜂1,

(
cond(𝐵1) does not represent I/O errors =⇒ ∃𝐵2 ∈ 𝜂2,

(
cond(𝐵1)

=⇒ cond(𝐵2)
)
∧ (𝐵1 ≡ 𝐵2)

)
and ∀𝐵2 ∈ 𝜂2,

(
cond(𝐵2) does not represent I/O errors =⇒ ∃𝐵1 ∈

𝜂1,
(
cond(𝐵2) =⇒ cond(𝐵1)

)
∧ (𝐵2 ≡ 𝐵1)

)
.

Remark 4.14. To identify expressions that represent I/O errors, we establish a set of predefined
evaluation rules for variables based on their semantic types. These rules are implemented with a
flow-sensitive pointer analysis to identify the semantic types of variables. For example, variables
of semantic type 𝜏FileDescriptor must be non-negative integers, while variables with semantic type
𝜏Buffer must not be null. Expressions that violate these rules are deemed to represent I/O errors.

Remark 4.15. Def. 4.13 treats error-handling behavior paths separately, due to the nature of I/O
APIs. Modern storage systems often provide different abstractions that lead to various types of
potential errors. The errors that may arise in the original programs, such as programs that invoke
POSIX APIs, may no longer occur under new storage systems. For example, the get API in Fig. 3a
eliminates the need to use file descriptors [88, 96]. As a result, any original error-handling code that
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1 uschar * next = buffer;
2 uschar * end = next + len;
3 while (next < end) {
4 ssize_t got = read(fd, next , end -next);
5 if (got == -1 && errno == EINTR) return;
6 next += got;
7 }
8 return len;

(a) Code snippet extracted from Exim [27].

⊤ 𝑠1 𝑠2 𝑒3

𝑠4 𝑒5

⊥

𝑠6 ⊥

⊥

(b) Behavior tree of Fig. 9a, where subscripts indicate
the line numbers in Fig. 9a.

1 uschar * next = buffer;
2 uschar * end = next + len;
3 while (next < end) {
4 ssize_t got = read(fd, next , end -next);
5 next += got;
6 }
7 return len;

(c) Code snippet obtained by removing error-
handling branches from Fig. 9a.

⊤ 𝑠1 𝑠2 𝑒3

𝑠4 𝑠6 ⊥

⊥

(d) Behavior tree of Fig. 9c, where subscripts indicate
the line numbers in Fig. 9a. This tree is equivalent to
Fig. 9b according to Def. 4.13.

1 *have = 0;
2 do {
3 get = len - *have;
4 if (get > max) get = max;
5 ret = read(state ->fd, buf + *have , get);
6 if (ret <= 0) break;
7 *have += (unsigned)ret;
8 } while (*have < len);

(e) Loop extracted from gz_load in zlib [49].

1 int read(int fildes , void *buf , int nbyte) {
2 ParamType :(arg0:FileDescriptor ,arg1:Buffer);
3 Semantics :{n=transfer(arg0 ,arg0.offset ,
4 arg2 ,arg1 ,0),
5 move_offset(arg0 ,arg2)};
6 Return: n:SizeTransferred;
7 }

(f) API specification for POSIX read.
Fig. 9. Example code snippets, behaviors, and specification.

deals with a missing file descriptor is no longer meaningful. It is therefore natural and reasonable
to disregard similar error-handling code when migrating across different storage systems.

Example 4.16. Fig. 9b and Fig. 9d present a pair of equivalent behavior trees emitted by Fig. 9a
and Fig. 9c, respectively. Fig. 9a differs from Fig. 9c with the presence of error-handling conditional
blocks on Line 5. Since the condition expression 𝑒5 = got == −1 ∧ errno == EINTR in Fig. 9b
represents I/O errors, the behavior path ⊤ 𝑠1 𝑠2 𝑒3 𝑠4 𝑒5 ⊥ is discarded. The remaining
program paths in these two trees are correspondingly equivalent.

Definition 4.17 (API Migration Problem). Given two specification suites 𝜚1 and 𝜚2, a program 𝑝1,
and a set of non-essential functions𝑌𝑛 , where called(𝑝1)∩dom(𝜚1) ≠ ∅ and called(𝑝1)∩dom(𝜚2) =
∅, an API migration problem is to find a new program 𝑝2 such that called(𝑝2) ∩ dom(𝜚2) ≠ ∅ and
∃𝜂1, 𝜂2 ∈ BehaviorTrees,

(
⟨𝑝1, 𝜚1, 𝑌𝑛⟩ { 𝜂1

)
∧
(
⟨𝑝2, 𝜚1 ∪ 𝜚2, 𝑌𝑛⟩ { 𝜂2

)
∧
(
𝜂1 is equivalent to 𝜂2

)
.

Remark 4.18. Def. 4.17 requires that 𝑝2 invokes at least one new API in dom(𝜚2) but does not
require eliminating all invocations to the old APIs in dom(𝜚1). Partially migrated programs are
allowed, which captures a realistic scenario for the migration of I/O APIs. For modern storage
systems, many new APIs in the file I/O domain have been purposefully designed to interoperate
seamlessly with existing POSIX APIs [38, 43, 88, 96]. Thus, partially migrated programs can execute
correctly, albeit with suboptimal performance—the greater the reliance on legacy APIs, the slower
the execution. For example, the files accessed with get in Fig. 3a can still be accessed with POSIX
APIs open/read/close [88, 96]. By migrating core APIs as extensively as possible, Sprout aims to
maximize the benefits of advancements in storage systems while preserving the program semantics.
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5 Automated Migration Guided by Semantic Types of Variables
Conceptually, Sprout first derives the behaviors of functions in the original program, then performs
typestate analysis to match the relevant code fragments that invoke the old APIs, and finally
synthesizes new code to invoke the new APIs. All these steps leverage the inferred semantic types
that Sprout infers for each variable. We present these algorithms below.

5.1 Deriving Function Behaviors
Ideally, all relevant invocations of the existing APIs should appear within a single functional scope.
In practice, software code often contains multiple abstraction layers that encapsulate the APIs in 𝜚1
to enhance readability and maintainability. To address this complication, we introduce the concept
of aliased functions, to collapse the multiple abstraction layers surrounding the I/O APIs. The goal
is to derive I/O behaviors for a broader range of functions encountered in practice and to identify
groups of indirect invocations of the existing APIs that would be difficult to migrate otherwise.

5.1.1 Simplifying Loops. We begin by pre-processing common loop structures and summarizing
them with their equivalent I/O behaviors. We collected a set of representative loop templates that
invoke I/O APIs. For each of these loops, we manually proved that (1) the loop is guaranteed to
terminate and (2) the loop transfers a specified amount of data from one location to another at a
designated offset, while adjusting the offset accordingly. Therefore, the loop block is equivalent to
a sequence of two atomic operations: a transfer operation and a move_offset operation.

Example 5.1. Fig. 9e presents a representative loop 𝑏Loop for which we prove its termination and
it is behaviorally equivalent to a single call to read in Fig. 9f, which reads len bytes at once without
requiring a loop. Sprout concludes that the I/O behavior emitted by 𝑏Loop is equivalent to that
of the atomic operations 𝑣 ← transfer(state->fd, 𝑜𝑐 , 𝑛, buf, 0) and move_offset(state->fd, 𝑣)
such that 𝑣 = len if 𝑛 ≥ len, otherwise 𝑣 = 𝑛.

For each loop block in the program 𝑝 , Sprout attempts to iteratively apply a series of refinement
steps. Each step ensures that the refined loop block emits I/O behavior equivalent to that of the
original loop. These refinement steps may involve: (1) swapping the branches and reversing the
condition of a conditional block, or (2) replacing a conditional block with its false branch if the
condition evaluates to true iff it represents I/O errors. This process continues until the refined loop
block conforms to a predefined template or until all possible refinements have been exhausted.
When Sprout determines that the original loop block is equivalent to a template, it concludes that
the loop emits certain I/O behaviors proven to be equivalent to those of the template.

Example 5.2. One step of the refinement simplifies the loop in Fig. 9a to the loop in Fig. 9c.

5.1.2 Merging Aliased Functions. Sprout identifies aliased functions to facilitate migration.

Definition 5.3 (Local Scopes). In a function definition 𝑑 = func 𝑦 (𝑣1, . . . , 𝑣𝑛) {𝑏}, the local scope
consists of local variables assigned within the function body 𝑏, along with inter-procedural values
such as global variables and function parameters modified by 𝑏.

Definition 5.4 (Liftable Conditions). For a conditional block “if (𝑒) {𝑏1} else {𝑏2}”, the condition
expression 𝑒 is a liftable condition iff 𝑒 has no data dependencies on the local scope of the function.
Otherwise, 𝑒 is a non-liftable condition.

Moving liftable conditions outside the function does not alter the program’s semantics.

Definition 5.5 (Aliased Functions). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩ and two functions
𝑦1, 𝑦2, where 𝑦1 is a user function defined by a function definition 𝑑 = func 𝑦1 (𝑣1, . . . , 𝑣𝑛) {𝑏} in
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the program 𝑝1, and some statements in 𝑏 call the function 𝑦2. We say 𝑦1 is an aliased function of 𝑦2
if IsAliased(𝑦1, 𝑦2, 𝑌𝑛) in Alg. 1 returns true.

Alg. 1 checks whether a function 𝑦1 ∈ dom(𝑝1) is an alias of another function 𝑦2 ∈ dom(𝑝1) ∪
dom(𝜚1). The algorithm in IsAliased starts by splitting the essential paths of 𝑦1. In particular,
SplitEssentialPaths first simplifies the loops in the function body and collects all paths in the
control-flow graph of the simplified function body. If any path contains non-liftable conditions, 𝑦1
is not identified as an alias of 𝑦2. If some path with liftable conditions 𝐸 invokes only the function
𝑦2 and non-essential functions in 𝑌𝑛 , 𝑦1 is identified as an alias of 𝑦2 under the liftable conditions 𝐸.

Example 5.6. Fig. 3d presents an example function in Exim [27] that Sprout identifies as an
aliased function of the POSIX API open() function.

Definition 5.7 (Atomic I/O Functions). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩. A function
𝑦 ∈ dom(𝑝1) ∪ dom(𝜚1) is an atomic I/O function if 𝑦 ∈ dom(𝜚1) or there exists some 𝑦′ ∈ dom(𝜚1)
where 𝑦 is an alias of 𝑦′, i.e. ∃𝑦′ ∈ dom(𝜚1), IsAliased(𝑦,𝑦′, 𝑌𝑛).

Definition 5.8 (Composite I/O Functions). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩. A function
𝑦 ∈ dom(𝑝1) is a composite I/O function if 𝑦 is not an atomic I/O function and its definition 𝑝1 (𝑦)
contains at least one call statement to an atomic I/O function or another composite I/O function.

A call statement emits I/O behaviors iff it calls an atomic I/O function or a composite I/O function.
Given an initial set of atomic I/O functions 𝑌𝑎 = dom(𝜚2), Sprout derives the aliased functions

for each atomic I/O function and stores the analysis result. For each 𝑦𝑎 ∈ 𝑌𝑎 , Sprout analyzes
the call graph of the program 𝑝1 to identify all caller functions of 𝑦𝑎 and determines if each caller
𝑦 ∈ dom(𝑝1) is an alias of 𝑦𝑎 . Once 𝑦 is identified as aliased with 𝑦𝑎 , 𝑦 is added to 𝑌𝑎 . This process
is repeated iteratively in topological order until 𝑌𝑎 reaches saturation. At this point, the functions
in 𝑌𝑎 are identified as atomic I/O functions, while the functions in dom(𝑝1) \ 𝑌𝑎 that call atomic
I/O functions are identified as composite I/O functions.

5.2 Identifying Code Fragments to Modify
To identify the code fragments in 𝑝1 that emit behaviors equivalent to that of an API𝜓 ∈ 𝜚 2, Sprout
matches the behaviors of the paths in 𝑝1 against the FSM that accepts the behavior of the new
API𝜓 . For each accepted behavior, the corresponding code fragment in 𝑝1 will be replaced with
synthesized code that invokes𝜓 (discussed later in Sec. 5.3) to produce the new program 𝑝2.

5.2.1 Constructing State Machines that Represent New API Semantics. A key step is identifying a
code fragment in 𝑝1 that exhibits behavior equivalent to that of a new API 𝑦 ∈ dom(𝜚2). Sprout
achieves this goal by matching the behavior paths in the behavior tree of 𝑝1 against an FSM that
accepts the behavior sub-paths emitted from the new API specification 𝜚2 (𝑦). For each accepted
behavior path, Sprout replaces the corresponding code fragment in 𝑝1 with the synthesized code
that invokes the new API 𝑦 instead, to produce the new program 𝑝2.

Definition 5.9 (Semantic Guards). A semantic guard 𝑔 is a predicate that enforces a constraint on
the intermediate state to ensure the legality of an I/O API invocation. SemanticGuards denotes the
non-empty finite set of possible semantic guards.

Definition 5.10 (State Machines). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩. An I/O finite state
machine (FSM) for a new API specification𝜓 ∈ 𝜚2 is a quadruple ⟨𝒮, 𝑆0, F , 𝛿⟩, where:
• the alphabet consists of all behavior nodes from the behavior tree of the original program 𝑝1.
• 𝒮 is a non-empty set of machine states. 𝑆0 ∈ 𝒮 is the start state. F ⊆ 𝒮 is a non-empty set of
accept states.
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Algorithm 1 Function alias detection.
Input: 𝑦1 ∈ dom(𝑝1 ) , a user function.
Input: 𝑦2 ∈ dom(𝑝1 ) ∪ dom(𝜚1 ) , a function called by 𝑦1 .
Input: 𝑌𝑛 ⊆ FunctionNames, a set of non-essential functions.
Output: A boolean value that indicates whether 𝑦1 is an alias of 𝑦2 .
1: function IsAliased(𝑦1, 𝑦2, 𝑌𝑛 )
2: return ∃⟨𝑏path, 𝐸⟩ ∈ SplitEssentialPaths(𝑦1 ),

𝑦2 ∈ called(𝑏path ) ∧ called(𝑏path ) ⊆ 𝑌𝑛 ∪ {𝑦2 }
Input: 𝑦 ∈ FunctionNames, a user-defined function.
Output: A set of tuples ⟨𝑏path, 𝐸⟩ where 𝑏path is a path and 𝐸 is a set

of liftable conditions.
1: function SplitEssentialPaths(𝑦)
2: 𝑑 ← 𝑝 (𝑦)
3: func 𝑦 (𝑣1, . . . , 𝑣𝑛 ) {𝑏} ← 𝑑

4: 𝑏′ ← 𝑏 with loops simplified according to Sec. 5.1.1
5: if 𝑏′ contains loops that cannot be simplified then return ∅
6: B ← all paths in the control-flow graph of 𝑏′
7: 𝑀 ← ∅
8: 𝐸𝑙 ← all liftable conditions in 𝑏′
9: for 𝑏path ∈ B do
10: 𝐸path ← all if conditions in 𝑏path
11: if 𝐸path ⊈ 𝐸𝑙 then return ∅
12: 𝐸 ← ∅
13: for 𝑒 ∈ 𝐸path do
14: if 𝑏path takes the true branch of 𝑒 then 𝐸 ← 𝐸 ∪ {𝑒 }
15: else if 𝑏path takes the false branch of 𝑒 then 𝐸 ← 𝐸∪{¬𝑒 }
16: 𝑀 ← 𝑀 ∪ {⟨𝑏path, 𝐸⟩}
17: return𝑀

Algorithm 2 FSM construction for an I/O API.
Input: 𝜓 ∈ 𝜚2 , the specification of a new API.
Output: an I/O finite state machine ⟨𝒮, 𝑆0, F, 𝛿 ⟩ for𝜓 .
1: function ConstructFSM(𝜓 )
2: spec 𝑦 (𝑣1 : 𝜏1, . . . , 𝑣𝑛 : 𝜏𝑛 ) : 𝜏return {𝜒 } ← 𝜓

3: return ConstructRecursively(𝜒 )
Input: 𝜒 ∈ OperationSequences, the operation sequence in a new

API specification𝜓 .
Output: an I/O finite state machine ⟨𝒮, 𝑆0, F, 𝛿 ⟩ for𝜓 .
1: function ConstructRecursively(𝜒 )
2: 𝑆0 ← a fresh state
3: if |𝜒 | = 0 then return ⟨{𝑆0 }, 𝑆0, {𝑆0 }, ∅⟩
4: 𝛼 ; 𝜒 ′ ← 𝜒

5: if 𝛼 is not a core operation then
6: return constructRecursively(𝜒 ′)
7: ⟨𝒮′, 𝑆 ′0, F′, 𝛿 ′ ⟩ ← ConstructRecursively(𝜒 ′ )
8: 𝒮← 𝒮

′ ∪ {𝑆0 }
9: 𝐺 ← the semantic guards that correspond to 𝛼
10: 𝑘 ← the kind of 𝛼
11: 𝛿 ← 𝛿 ′ ∪ {⟨𝑆0, 𝑘,𝐺, 𝑆 ′0 ⟩, ⟨𝑆0, 𝑘non-core, ∅, 𝑆0 ⟩}

∪ {⟨𝑆0, 𝑘 ′, {¬𝑔FdConsistency }, 𝑆0 ⟩ |
𝑘 ′ ∈ BehaviorNodeKinds}

⊲𝑔FdConsistency is the predicate that “𝛽 operates on the same 𝑣handle”
12: return ⟨𝒮, 𝑆0, F′, 𝛿 ⟩

Algorithm 3 Dependency-driven synthesis.
Input: 𝜓 ∈ 𝜚2 , the specification of new I/O API.
Input: 𝐿 = ⟨𝑠1 . . . 𝑠𝑛 ⟩ ⊆ Statements, the minimal accepting

code fragment of a behavior sub-path 𝐵 accepted by the
I/O finite state machine of𝜓 .

Input: Γ ∈ SemanticVariableContexts, the semantic variable
context of a behavior sub-path 𝐵 accepted by the I/O
finite state machine of𝜓 .

Output: a boolean value indicating whether the synthesis is
successful.

1: function Synthesize(𝜓, 𝐿, Γ)
2: 𝜅 ← the sketch that corresponds to𝜓
3: 𝜅′ ← FillSketchHoles(𝜅, Γ)
4: if 𝜅′ is nil then return false
5: 𝑠 ← the statement in 𝐿 that corresponds to 𝜅′
6: 𝐾 ← {⟨𝑠, 𝜅′ ⟩}
7: 𝑉 ← the variables defined in 𝐿 but not defined in 𝜅′
8: while𝑉 ≠ ∅ do
9: 𝑣 ← a variable in𝑉
10: 𝑉 ← 𝑉 \ {𝑣}
11: for 𝑠 ∈ all use sites of 𝑣 do

⊲ based on an over-approximated value-flow analysis
12: 𝜅 ← a sketch that corresponds to 𝑠
13: 𝜅′ ← FillSketchHoles(𝜅, Γ)
14: if 𝜅′ is nil then return false
15: 𝑉 ′ ← the variables defined in 𝑠 but not defined in 𝜅′
16: 𝑉 ← 𝑉 ∪𝑉 ′
17: 𝐾 ← 𝐾 ∪ {⟨𝑠, 𝜅′ ⟩}
18: remove all statements in 𝐿 from the program 𝑝1
19: for ⟨𝑠, 𝜅′ ⟩ ∈ 𝐾 do
20: apply 𝜅′ to the program 𝑝1 at the location of 𝑠
21: return true
Input: 𝜅 ∈ Sketches, a provided sketch.
Input: Γ ∈ SemanticVariableContexts, the semantic variable

context of a behavior sub-path 𝐵 accepted by the I/O
finite state machine of𝜓 .

Output: A filled sketch or nil, which indicates that it is impossi-
ble to fill the sketch.

1: function FillSketchHoles(𝜅, Γ)
2: if 𝜅 has been completed and has no holes then return 𝜅
3: ℎ ← the first hole from 𝜅
4: 𝜏 ← the semantic type of ℎ
5: if no variable has semantic type 𝜏 in Γ then
6: 𝜅′ ← a sketch that returns a variable whose type is 𝜏
7: if 𝜅′ is nil then return nil

⊲ no sketch returns a variable whose type is 𝜏
8: 𝑣 ← a fresh variable
9: ℎreturn ← the hole of the returned variable in 𝜅′
10: return FillSketchHoles(𝜅′ [𝑣 / ℎreturn ], Γ) ++

FillSketchHoles(𝜅 [𝑣 / ℎ], Γ)
11: else
12: 𝑣 ← a variable that has semantic type 𝜏 in Γ
13: return FillSketchHoles(𝜅 [𝑣 / ℎ], Γ)

• 𝛿 ⊆ 𝒮 × BehaviorNodeKinds × P(SemanticGuards) × 𝒮 is the non-deterministic transition
relation that indicates which next state to enter after consuming a symbol in the alphabet. A
transition ⟨𝑆1, 𝑘,𝐺, 𝑆2⟩ ∈ 𝛿 denotes that when the FSM is currently in 𝑆1, it will transition to
the state 𝑆2 if the behavior node 𝛽 that it consumes satisfies: (1) the kind of 𝛽 is 𝑘 ; (2)

∧
𝑔𝑖 ∈𝐺 𝑔𝑖

evaluates to true on the corresponding intermediate state of 𝛽 .
The FSM accepts a behavior sub-path 𝐵 iff the FSM transitions from the start state 𝑆0 to an accept

state 𝑆 𝑓 ∈ F by consuming all behavior nodes in 𝐵.
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Alg. 2 presents the algorithm for constructing an FSM that represents the behavior of an I/O
API, where the semantic guards are predefined for atomic operations and semantic types.

Example 5.11. Given the behavioral specification of the get API in Fig. 3a, Sprout constructs
the FSM in Fig. 3b, which accepts behavior sub-paths that are equivalent to the ones emitted by
the get API. Sprout first constructs states 𝑆0 and 𝑆1 along with their transitions, incorporating
the guard 𝑔Permission based on the atomic operation f=connect_file(arg0,Read). This guard
ensures that the file permission includes the Read attribute. Subsequently, based on the behavior
tuple n=transfer(f,0,f.size,arg1,0), Sprout constructs state 𝑆2 with transitions from 𝑆1 to
𝑆2 and introduces the following guard conditions: (1) 𝑔FdConsistency, which validates file descriptor
consistency; (2) 𝑔Flow, which specifies the direction of data flow, verifying that data is transferred
from a file to a buffer; (3) 𝑔Offset, which ensures the file offset equals zero, in accordance with
user-specified constraints; (4) 𝑔Size, which verifies that the transfer size matches the file size; and
(5) 𝑔Loop, which ensures that the consumed behavior tuples are emitted from the same loop context.
Next, Sprout constructs state 𝑆3 and its transitions, applying the guard conditions 𝑔FdConsistency
and 𝑔Loop again, based on the behavior tuple disconnect(f). Finally, Sprout introduces state 𝑆4
to handle reject transitions, completing the FSM construction.

Definition 5.12 (Semantic Variable Contexts). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩ and
a behavior sub-path 𝐵 that belongs to the behavior tree of 𝑝1 and is accepted by an FSM for
a new API specification 𝜓 ∈ 𝜚2. Let ⟨𝑆0, 𝑘1,𝐺1, 𝑆1⟩, . . . , ⟨𝑆𝑛−1, 𝑘𝑛,𝐺𝑛, 𝑆 𝑓 ⟩ be the transition path
of the FSM to accept 𝐵. Let 𝜎STM

𝑖 be the semantic type map in the intermediate state 𝜎𝑖 on
which

∧
𝑔𝑖,𝑗 ∈𝐺𝑖

𝑔𝑖, 𝑗 evaluates. The semantic variable context Γ is the set of all tuples ⟨𝑣, 𝜏⟩ such
that the variable 𝑣 appears in some 𝑔𝑖, 𝑗 and 𝜏 is the corresponding semantic type in 𝜎STM

𝑖 , i.e.
Γ =

⋃𝑛
𝑖=1

{
⟨𝑣, 𝜏⟩ ∈ 𝜎STM

𝑖 | ∃𝑔𝑖, 𝑗 ∈ 𝐺𝑖 , 𝑣 appears in 𝑔𝑖, 𝑗
}
.

Definition 5.13 (Minimal Accepting Code Fragments). Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩
and a behavior sub-path 𝐵 that belongs to the behavior tree of 𝑝1 and is accepted by an FSM for a
new API specification𝜓 ∈ 𝜚2. Let 𝛽1, . . . 𝛽𝑛 be the sequence of core operation nodes in 𝐵, which are
matched by the FSM. The minimal accepting code fragment ⟨𝑠1 . . . 𝑠𝑛⟩ is the sequence of statements
in the program 𝑝1 such that each core operation node 𝛽𝑖 is emitted by the statement 𝑠𝑖 .

Example 5.14. For a transition ⟨𝑆1, 𝑘transfer,𝐺, 𝑆2⟩ in Fig. 3b, Sprout first checks if 𝛽 = 𝛼 and
𝛼 = 𝑣 ← transfer(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) to verify the behavior node kind. If so, Sprout then evaluates
the semantic guards in 𝐺 . Recall from Def. 5.10 that when the FSM consumes a behavior node 𝛽 ,
the corresponding intermediate state 𝜎 is used for evaluating guard conditions. 𝑔Size ∈ 𝐺 evaluates
to true if the semantic type of the program variable 𝑣3 has the semantic type 𝜏FileSize. To check this
property, Sprout uses the points-to results 𝜎PTR and the semantic type map 𝜎STM in the intermediate
state 𝜎 . Similarly, 𝑔Offset ∈ 𝐺 evaluates to true if the current offset value associated with the file
descriptor that 𝑣1 points to equals zero according to the file offset map 𝜎FOM .

5.2.2 Conservative Analyses on Behavior Paths. To ensure that removing a minimum accepting
code fragment does not break functionality unrelated to the migration, Sprout conservatively
ensures that all the behavior sub-paths emitted by the code fragment are behaviorally equivalent
regardless of the behavior path that the sub-path lies in. To ensure this property, Sprout uses an
over-approximated value-flow graph based on Andersen’s pointer analysis [66, 82] to check for
value consistency and resource type consistency.

Definition 5.15 (Value Consistency). For a variable 𝑣 , the value of 𝑣 is consistent at a use site if
𝑣 holds the same value regardless of the behavior path that passes through the use site. For any
statement that emits a behavior node consumed by the FSM, Sprout performs an intra-procedural
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analysis on all behavior paths that reach the statement. Sprout conducts reachability analysis on
the value-flow graph, where the sink is the current use site of 𝑣 and the sources are the re-definition
sites of 𝑣 within the function. The value consistency of 𝑣 holds if no sources can reach the sink. A
semantic guard is deemed satisfied if the values from the intermediate state satisfy the guard and
the values of variables are consistent.

Definition 5.16 (Resource Type Consistency). For a variable 𝑣 with the semantic type 𝜏FileDescriptor,
the resource type of 𝑣 is consistent at a use site if 𝑣 is connected to the same type of resource
𝑅, regardless of the behavior path that passes the use site. Because resources often outlive the
function to which the code fragment belongs, Sprout conducts reachability analysis on the over-
approximated value-flow graph of the entire program, where the sink is the use site of 𝑣 and the
sources are all I/O API calls that connect to resources whose types are not 𝑅. The resource type
consistency of 𝑣 holds if no sources can reach the sink. The guard 𝑔Flow is deemed satisfied if the
variable from an intermediate state 𝜎 holds resource type consistency.

Lemma 5.17. Given a semantic variable context Γ of a behavior sub-path accepted by an FSM,
• A variable 𝑣 must preserve value consistency intra-procedurally if ∃ 𝜏 ∈ SemanticTypes, ⟨𝑣, 𝜏⟩ ∈ Γ.
• If the semantic guard 𝑔Flow is satisfied during FSM transitioning, for any variable 𝑣 such that
⟨𝑣, 𝜏FileDescriptor⟩ ∈ Γ, 𝑣 must preserve resource type consistency inter-procedurally.

Rationale. The over-approximated value-flow graph encompasses all potential value flows in
the program, and no such flow exists from the sources to the sink. □

5.2.3 I/O State Inference of Behavior Paths. Sprout enumerates all behavior paths 𝐵 in the behavior
tree of 𝑝1 such that 𝐵 goes through a composite I/O function, which serves as a potential scope
for identifying code fragments that may require migration. A naïve brute-force approach to path
enumeration scales exponentially as the number of condition nodes increases. To enhance scalability,
Sprout prunes behavior paths whose conditions represent I/O errors according to Def. 4.13.

CFG Block 𝑏0

CFG Block 𝑏1

CFG Block 𝑏2

. . .

CFG Block 𝑏3
Common Post-
Dominator 𝑏𝑝

Pruned

Fig. 10. Post-dominator pruning
example.

Pruning paths solely based on I/O errors is insufficient, as a sig-
nificant portion of path conditions may contain expressions that do
not represent I/O errors. Sprout further deploys another pruning
strategy based on the common post-dominator block in the control-
flow graph (CFG) of the composite I/O function. Fig. 10 presents
an example that applies the pruning strategy. After enumerating
a behavior path that goes through the CFG blocks 𝑏0, 𝑏1, and 𝑏𝑝 ,
Sprout prunes the behavior path 𝐵 if (1) 𝐵 goes through the CFG
blocks from 𝑏0 to 𝑏𝑝 via 𝑏2 and (2) the sub-path of 𝐵 emitted by the
CFG blocks 𝑏2, . . . , 𝑏3 contains no operation nodes.

For each enumerated behavior path, Sprout computes the inter-
mediate state between each pair of adjacent behavior nodes on the
behavior path using the rules outlined in Fig. 7. In particular, Sprout identifies the semantic types
of variables along each behavior path through flow-sensitive pointer analysis. Sprout then tests
the behavior paths against the FSMs for the new API specifications. For a sub-path that is accepted
by the FSM for a new API specification𝜓 ∈ 𝜚2, Sprout collects the semantic variable context and
the minimal accepting code fragment for use in the synthesis stage.

Lemma 5.18. Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩. Let the behavior tree of 𝑝1 be 𝜂1. For
any new API specification 𝜓 ∈ 𝜚2, if the FSM for 𝜓 accepts some behavior sub-path 𝐵 from 𝜂1 and
the minimal accepting code fragment of 𝐵 is ⟨𝑠1 . . . 𝑠𝑛⟩, any behavior sub-path 𝐵′ from 𝜂1 whose core
operation nodes are emitted by 𝑠1 . . . 𝑠𝑛 will also be accepted by the FSM for𝜓 .
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Proof Sketch. For any behavior sub-path 𝐵′′ accepted by the FSM, 𝐵′′ is equivalent to the
behavior sub-path emitted by the invocation of 𝜓 . The semantic guards always evaluate to the
same results across different behavior paths of 𝐵′, which follows from Lem. 5.17. □

Lem. 5.18 is important because a code fragment may emit behaviors that vary depending on
the incoming program state. Sprout ensures that any minimal accepting code fragment will emit
behaviors that are always accepted by the FSM regardless of which behavior path reaches the code.

5.3 Synthesizing the Migrated Program
After identifying a behavior sub-path whose minimal accepting code fragment is equivalent to a
new API call during the state inference stage, Sprout synthesizes a migrated program that invokes
the new API instead of the old ones.
Alg. 3 presents the algorithm to synthesize a migrated program that invokes the new I/O API.

For each behavior sub-path 𝐵 accepted by the FSM for a new API specification 𝜓 ∈ 𝜚2, Sprout
extracts 𝐵’s minimal accepting code fragment and semantic variable context, then passes them
along with𝜓 to the synthesis algorithm. When the function Synthesize returns true, the original
program 𝑝1 modified by the algorithm is the migrated program that Sprout synthesizes.
Synthesize first retrieves a provided sketch for𝜓 , then completes the sketch (see below) and

uses it to replace the original code fragment in the program 𝑝1. This replacement may cause certain
original variables to become undefined. Sprout iteratively identifies the original use sites of these
deprecated variables intra-procedurally based on over-approximated value flows [84]. Each use site
is replaced with another sketch, selected by searching for a provided sketch that performs the same
I/O atomic operations as the code to be replaced. Sprout completes these sketches so that they
implement the same functionality as the deprecated variables but no longer rely on the deprecated
variables. Sprout repeats this process for all deprecated variables until none of them remains.

To complete each sketch, FillSketchHoles uses a dependency-driven approach to recursively
fill all the holes in the sketch. Sprout tries to fill each hole with an existing variable that has the
same semantic type. If no such variable exists, Sprout creates a fresh variable and prepends a
prerequisite sketch that assigns a value to this new variable. This prerequisite sketch is selected
by searching for a provided sketch that returns a variable of the same semantic type as the hole.
Sprout then recursively completes the prerequisite sketch.

5.4 Soundness
A migration algorithm is considered sound if, whenever it produces a migrated program, the
migrated program correctly preserves the behavior of the original program. We establish Thm. 5.19,
which states that the program migrated by Sprout is correct and emits a behavior tree equivalent
to that of the original program, thereby satisfying the definition of soundness.

Theorem 5.19. Consider a migration problem ⟨𝜚1, 𝜚2, 𝑝1, 𝑌𝑛⟩, where the program 𝑝2 is synthesized
by Alg. 3. We have: (1) 𝑝2 is syntactically correct, (2) 𝑝2 invokes some new API 𝑦 ∈ dom(𝜚2), and (3)
𝑝2 emits a behavior tree equivalent to that of the original program 𝑝1.

Proof Sketch. The correctness of the theorem is implied by three key facts: (1) All holes in the
sketches are filled with variables with the appropriate semantic types; (2) The behavior sub-paths
accepted by the FSM for 𝜚2 (𝑦) are equivalent to the behavior sub-paths emitted by an invocation
of 𝑦, as established in Lem. 5.18; (3) All variables in the minimal accepting code fragment preserve
value consistency over all behavior paths according to Lem. 5.17. □
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6 Experimental Results
We implemented a Sprout prototype on top of SVF [83], a static value-flow analysis tool based on
LLVM [45] and ANTLR [1]. Our newly implemented functionality contains ~25k lines of C++ code.

6.1 Applicability to Real-World Programs and APIs
We acquired 30 benchmark programs from open-source C projects on GitHub. The program sizes
range from hundreds to over 100k lines of code (LoC). The benchmark programs perform I/O
operations by invoking traditional POSIX APIs.

We developed specifications for the following I/O APIs:
• Over 30 POSIX APIs, such as open, close, (p)read, (p)write, (f)stat, lseek, fopen, fread,
fclose, fseek, and ftell.
• Three types of modern I/O APIs proposed by the operating-system community: userspace I/O
APIs for NVM such as get and put [88, 96], which eliminate file descriptors, zero-copy I/O
interfaces on NVM such as peek and patch [43], and Linux zero-copy I/O APIs such as mmap [40],
splice [42], and sendfile [41].
Sprout takes the benchmark programs as input, then replaces the invocations to the POSIX I/O

APIs with modern ones to generate migrated programs.
Tab. 1 presents statistics from applying Sprout to these benchmark programs, with a timeout

limit of 30 minutes. Each row corresponds to a program. The first two columns (Id and Name)
present the benchmark number, name, and GitHub link from which the program was sourced.
The next two present statistics from the program. Ploc presents the program’s lines of code, and
PIO-f presents the total number of I/O-related functions including atomic functions and composite
functions in the program. The next three present statistics from the analysis. Aa-f presents the
number of identified aliased functions, As-var presents the number of identified semantic variables
in the composite functions analyzed, and Apath presents the number of enumerated paths. “𝑥 → 𝑦”
denotes that 𝑥 is obtained without pruning, while 𝑦 is obtained with pruning enabled. We focus
our discussion on the pruned results 𝑦 in this section and defer the discussion of 𝑥 to Sec. 6.2. The
next two columns present statistics from the synthesized code. Sdiff presents the lines of code that
differ before and after migration as reported by DiffChecker [15]. Sequiv presents the number of
migrated function invocations. It counts only those invocations to atomic functions identified as
behaviorally equivalent to the new API invocations. These two columns are obtained with pruning
enabled. The last column (Time) presents the wall-clock time, in seconds, required to migrate each
program. “TO” denotes a timeout. The experiments are conducted on an Ubuntu 22.04 LTS server
with two 16-core CPUs of Intel(R) Xeon(R) Gold 6444Y Processor (45M Cache, base clock 3.60 GHz)
and 256 GiB of DDR5-4800 ECC RDIMM RAM.
Sprout successfully migrates 29 of the 30 benchmark programs (97%) in the time limit. On

average, Sprout synthesizes programs that differ in 32.1 lines after migrating 8.2 function calls.
Even for the benchmark program #30 (exim) for which Sprout does not terminate in 30 minutes,
Sprout successfully synthesizes a program that differs in 115 lines after migrating 17 function
calls. These results indicate that Sprout is effective in migrating real-world I/O programs.

For the 24 smaller programs under 10k LoC, Sprout completes migration in 30.967 seconds on
average. Fig. 11c visualizes the scalability of Sprout for the 6 larger programs that exceed 10k
LoC. The horizontal axis represents the value-flow graph construction time, which indicates the
complexity of the graph. The vertical axis represents the migration time as reported in Tab. 1.
Each data point represents a program, with a line connecting the points from left to right. The
migration time is positively correlated with the complexity of the value-flow graph. We attribute
this phenomenon to the increased overhead associated with performing source-sink reachability
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Table 1. Summary statistics for the results of applying Sprout to benchmark I/O programs.

Id Name Ploc PIO-f Aa-f As-var Apath Sdiff Sequiv Time

1 HTTP-Server 184 14 0 98→ 92 18→ 12 41 4 0.214→ 0.177
2 png-parser 192 4 2 256→ 126 27→ 10 13 4 3.403→ 0.939
3 Html-Parser 215 11 1 84→ 81 13→ 10 16 6 0.198→ 0.169
4 filebench (adapted) 245 9 2 96→ 93 8→ 3 16 8 0.218→ 0.205
5 png_parser 397 7 0 78→ 78 2→ 1 18 6 0.210→ 0.095
6 jread 406 6 0 73→ 73 4→ 1 12 6 0.130→ 0.121
7 HTML-parser 538 9 0 2117→ 93 15475→ 22 20 6 TO→ 2.084
8 W3eParser 716 17 0 6301→ 171 3527→ 14 9 3 TO→ 3.803
9 C-JSON-Parser 830 12 0 187→ 107 114→ 41 28 7 5.360→ 2.224
10 CsvParserLib 872 16 1 176→ 171 31→ 10 29 4 0.857→ 0.618
11 JUnzip 1074 26 4 912→ 161 146→ 18 17 5 76.260→ 0.693
12 jsonic 1210 8 0 4968→ 434 5419→ 43 24 6 TO→ 100.411
13 nxjson 1367 12 0 90→ 85 14→ 4 36 8 1.377→ 1.332
14 pdjson 1427 10 0 74→ 74 10→ 4 22 7 5.605→ 5.515
15 xjson 1501 25 2 103→ 90 122→ 34 33 7 5.169→ 4.335
16 SoftJson 1515 22 1 88→ 88 22→ 16 38 9 1.461→ 1.400
17 chtml 2072 22 1 121→ 77 788→ 22 26 6 36.503→ 0.968
18 LibHTML 2135 15 1 81→ 81 5→ 5 19 6 0.504→ 0.500
19 Smelt 2252 14 1 82→ 82 13→ 6 21 6 0.493→ 0.300
20 json 2270 38 7 74→ 72 1214→ 38 25 12 46.543→ 1.514
21 CSV_Parser 2280 15 0 193→ 77 496→ 6 40 8 15.813→ 2.000
22 zlib (adapted) 2826 27 3 737→ 226 486→ 32 61 15 106.489→ 18.592
23 parson 3761 29 1 94→ 86 73→ 22 22 10 8.007→ 7.324
24 minizip 6049 26 0 767→ 394 765→ 80 25 4 TO→ 578.256
25 JPStream 11904 49 1 78→ 193 257→ 653 36 13 TO→ 1408.112
26 lodepng 12621 48 3 203→ 275 4561→1554 45 12 TO→ 604.556
27 cJSON 17249 26 2 253→ 150 1441→ 20 72 18 24.167→ 2.693
28 lua-gumbo 32785 8 3 130→ 123 54→ 20 18 6 60.052→ 59.406
29 flatcc 63532 57 5 1470→ 233 14116→ 83 65 17 TO→ 5.724
30 exim 120797 213 16 2045→3908 3415→1985 115 17 TO→ TO
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Fig. 11. Experimental results.
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checks on the value-flow graph as the complexity of the graph increases. The migration time does
not always increase with the program size. When the value-flow graphs are less complex, even
the large benchmark programs #27 (cJSON), #28 (lua-gumbo), and #29 (flatcc) can be migrated
successfully within a minute. We attribute this efficiency to Sprout’s ability to simplify loops and
identify aliased functions, which facilitates migration in spite of sophisticated code structures.

6.2 Effectiveness of Path Pruning, Loop Simplification, and Function Merging
Recall that Sprout employs two pruning strategies—path pruning based on semantic variables
and post-dominator blocks—to expedite the intra-procedural exploration of paths. To evaluate
the effectiveness of pruning, we conducted an ablation study by disabling pruning in Sprout
before applying it to the benchmark programs. Fig. 11a and Fig. 11b visualize the number of
enumerated paths and the migration time, respectively, for Sprout with and without pruning.
Blue bars represent the results with pruning enabled, while orange bars represent the results
without pruning. The vertical axes use a logarithmic scale. For most of the programs, the numbers
with pruning enabled are less than or equal to those without pruning. The only exceptions are
benchmark programs #25 (JPStream), #26 (lodepng), and #30 (exim), where enabling pruning leads
to more enumerated paths and/or semantic variables. We attribute these exceptions to pruning
enabling Sprout to analyze more functions before timing out. In fact, for two of these programs,
pruning is essential for completing the migration within the time limit. On average, pruning leads
to 90.9% fewer enumerated paths within the time limit and 74.9% less migration time. These results
indicate that the pruning strategies in Sprout are effective in improving migration performance.
Recall that Sprout simplifies loops and merges aliased functions to infer the I/O behavior of

functions within a program. To evaluate the impact of these stages, we conducted an ablation
study by disabling them in Sprout before applying it to the benchmark programs. The ablated
version of Sprout fails to migrate 7 of the 30 programs (23%) since it can no longer identify any
behaviorally equivalent I/O API invocations in these programs. The affected ones are #1 (HTTP-
Server), #2 (png-parser), #4 (filebench), #20 (json), #28 (lua-gumbo), #29 (flatcc), and #30 (exim).
Large programs are affected more heavily—the modified Sprout can no longer migrate 3 of the 6
large benchmark programs (50%) that exceed 10k LoC. These results indicate that loop simplification
and aliased-function merging are essential for enabling migration in large programs.

6.3 Correctness and Performance of the Migrated Programs
For each benchmark, we developed a test suite that consists of 10 test cases that process files of
varying sizes, ranging from 512 B to 64MB. We categorize files smaller than 32 KB as small files and
those exceeding 32 KB as large files. We then performed experiments by executing both the original
programs and their migrated versions using the same test suites under identical environments.
We used the Linux zero-copy APIs [40–42] provided by Ubuntu. For file systems that require
NVM, we emulated it with DRAM, following prior work [38]. We evaluated the corresponding file
systems [43, 96] on a virtual machine.
Fig. 11d presents the performance results of the migrated programs, averaged over 5 runs. The

horizontal axis represents the speedup ratio relative to the original versions, while the vertical axis
represents the number of benchmark programs. A rectangle drawn between horizontal markers
𝑙 and 𝑟 represents the programs for which the migrated versions achieve a speedup ratio within
the interval (𝑙, 𝑟 ]. All 30 migrated programs gain performance speedup for small files and 28
programs gain speedup for large files. The speedup for small files results mainly from removing file
descriptors and reducing the context-switching overhead between user space and kernel space [96],
and the speedup for large files results from zero-copy I/O [43]. The average speedup for small files
is 24.9% (max 56.1%) and the average speedup for large files is 51.6% (max 90.1%). Two migrated
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benchmark programs, #22 (zlib) and #24 (minizip), show no speedup when processing large files, so
their results are omitted from the plot. We attribute it to some modern APIs, such as get and put,
only improving performance when input files are below a certain size [88], since the data copy
overhead dominates. These results highlight the potential to maximize performance benefits of
modern storage systems through Sprout’s automated migration.

6.4 Generality to Other Application Domains
To enable automated migration, Sprout leverages domain-specific insights such as semantic types,
commonly aliased functions, and bounded loops that invoke APIs. To evaluate how well our
approach generalizes to other domains, we conducted a case study that adapts Sprout to database
access APIs (DB APIs) in the MySQL C Library [55]. Automated migration of DB APIs is important
for purposes such as upgrading deprecated APIs to benefit from technological advancements [67, 97]
and batching multiple queries to enable performance optimizations [8, 18, 71]. However, automated
migration of DB APIs is nontrivial because it often requires stateful and many-to-many API
mappings that are intermingled with the structured control flow in non-contiguous code. These
challenges are similar to those encountered when migrating I/O APIs.

Effort Required for Adaptation. We made the following lightweight modifications to Sprout:
(1) Customize the specification language and semantic types to characterize DB APIs. Furthermore,
we incorporate the customized semantic types into the semantic pruning strategies to gain perfor-
mance benefits, which is optional. (2) Incorporate the API state transitions and semantic guards
into the FSM implementation. (3) Customize the sketches according to the new DB APIs.

These customizations were completed by our lead author in less than two weeks. For context, the
full Sprout prototype took approximately 10 person-months to implement. These results indicate
that customizing Sprout to work with a different application domain is relatively straightforward.

𝜓 F spec 𝑦 (𝑣1 : 𝜏1, . . . , 𝑣𝑛 : 𝜏𝑛 ) : 𝜏return {𝜒 }
𝜒 F 𝜀 | 𝛼 | 𝛼 ; 𝜒
𝛼 F 𝑣buffer ← alloc(𝑣size ) (Allocate)
| 𝑣handle ← init_handle( ) (Init Handle)
| 𝑣handle ← connect(𝑣handle ) (Connect Database)
| disconnect(𝑣handle ) (Disconnect)
| 𝑣error_flag ← query(𝑣handle, 𝑣stmt ) (Query)
| 𝑣result ← get_result(𝑣handle ) (Get Result)
| return 𝜃 (Return)

𝜓 ∈ BehavioralSpecifications 𝑦 ∈ FunctionNames

𝜏1, . . . , 𝜏𝑛, 𝜏return ∈ SemanticTypes

𝜒 ∈ OperationSequences 𝛼 ∈ AtomicOperations

𝑣, 𝑣1, . . . , 𝑣𝑛, 𝑣buffer, 𝑣handle,

𝑣result, 𝑣stmt, 𝑣error_flag ∈ SpecVars

Fig. 12. Abstract syntax of behavioral specifications
for database access API. Note that the semantic types
in𝜓 have been adapted to the database domain.

After these lightweight customizations, the
remainder of Sprout remains unchanged. The
unchanged core components include (1) the
function alias detection algorithm, (2) the path
enumeration algorithm, which includes the en-
hanced flow-sensitive pointer analysis for up-
dating semantic variable contexts, (3) the type-
state analysis that builds on FSM transitions
accepting behaviors, and (4) the dependency-
driven synthesis algorithm, as outlined in Fig. 1.
Loop simplification is unnecessary for the DB
APIs and therefore disabled. These core com-
ponents address the key challenges in deter-
mining whether a set of multiple API invoca-
tions in non-contiguous code can be migrated
and, if so, how to synthesize the migrated code.
These algorithms are also applicable to other
application domains beyond I/O and databases,
provided that the aforementioned lightweight
customizations are implemented.

Customized Specification Language and Semantic Types. We modified Sprout’s specifica-
tion language, originally defined for I/O APIs in Fig. 5, to incorporate new atomic operations and
semantic types that work with DB APIs as in Fig. 12. The new atomic operations initialize a database
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1 int mysql_real_query(MYSQL *mysql , const char
*stmt_str , unsigned long length) {

2 ParamType :{arg0:Handle , arg1:QueryStmt , arg2:
StmtLength}

3 Semantics :{query(arg0 , arg1)}
4 Return: r0:ErrorFlag
5 }
6 Sketch: {
7 Sketch 1: char queryStmt[MAX_QUERY_LENGTH ];
8 ...
9 Sketch 2: sprintf (#0, "%s\n;", #1);
10 ...
11 Sketch 3: #2 = mysql_real_query (#3, #4, #5);
12 ...
13 Sketch 4: do {
14 MYSQL_RES* new_res = mysql_store_result (#6);
15 if (#7) {
16 mysql_free_result (#7);
17 }
18 #7 = new_res;
19 } while (mysql_next_result (#6) == 0);
20 }

(a) Specification and sketches for mysql_real_query.

𝑆0start

𝑆1

𝑆2

⟨𝑘query, {𝑔Initialization,
𝑔Connection}⟩ ⟨𝑘get_result, {𝑔HandleConsistency}⟩

⟨𝑘query, {𝑔HandleConsistency, 𝑔Atomicity, 𝑔PathConsistency}⟩

(b) State machine for merging DB queries.

1 fd = open(filename , O_RDONLY);
2 fstat(fd, &st);
3 int file_size = st.st_size;
4 bool cond = func1();
5 if (cond) {
6 file_size = func2();
7 }
8 ...
9 read(fd, buf , file_size);
10 close(fd);

(c) Code not migrated.
Fig. 13. Example specification, state machine, and code snippet.

Table 2. Summary statistics for the results of applying Sprout to benchmark database programs.

Id Name Ploc PDB-f Aa-f As-var Apath Sdiff Sequiv Time

1 dart-HOCH 130 5 0 10→ 7 8→ 5 12 3 0.629→ 0.638
2 EducationalMaterial 201 15 0 34→ 22 17→ 7 18 4 0.453→ 0.238
3 irix (db-module) 601 36 1 117→ 63 73→ 15 44 15 3.207→ 0.548
4 smlgr 818 19 0 67→ 57 6250→ 22 16 3 TO→ 5.686
5 RoadApplePi 972 22 0 368→180 959→307 42 10 TO→ 34.898
6 redhat (db-module) 1092 16 8 60→ 40 27→ 18 30 10 9.177→ 5.095
7 Forum-system 1182 18 0 13→ 12 11→ 9 34 10 13.417→ 13.373
8 openrail 2198 37 2 802→ 70 915→ 36 22 5 TO→ 49.987
9 chatroom_lt 2507 40 0 492→256 164→ 34 96 42 23.159→ 12.317
10 C-Blog 2546 27 1 128→ 88 36→ 17 38 16 3.311→ 2.583

handle (Init Handle), establish a connection to a database instance (Connect Database), perform a
query on a connected database instance (Query), and retrieve query results from the database in-
stance (Get Result). New semantic types include Handle, Result, ErrorFlag, and QueryStmt. We used
this formulation to specify the semantics of over 30 DB APIs provided by the MySQL C Library [55],
including commonly used APIs mysql_query, mysql_create_db, and mysql_select_db.

Example Migration Problem. Consider the problem of upgrading programs that invoke the
5.x version of the MySQL C library to its 8.x version. Many APIs are deprecated and should be
replaced, such as mysql_connect, mysql_create_db, and mysql_drop_db [54]. In addition, to take
advantage of the new API mysql_real_query that can perform multiple queries at once to improve
performance [8, 18, 71], we also aim to identify groups of multiple individual invocations to the old
API mysql_query and merge them into a single invocation to mysql_real_query. Achieving this
migration is nontrivial, since it requires replacing multiple related stateful API invocations with
synthesized code that is behaviorally equivalent.
For instance, Fig. 13a presents the specification for mysql_real_query, and Fig. 13b presents

the FSM for replacing multiple mysql_query invocations with a single merged mysql_real_query
invocation. Each invocation to mysql_query emits a behavior node 𝛽 = 𝛼 , where 𝛼 = 𝑣error_flag ←
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query(𝑣handle, 𝑣stmt). To replace them, all guard conditions 𝑔 ∈ 𝐺1∪𝐺2 on the transitions ⟨𝑆0, 𝑘query,
𝐺1, 𝑆1⟩ and ⟨𝑆1, 𝑘query,𝐺2, 𝑆1⟩ in Fig. 13b must hold. The semantic guards in the transition includes:
• The database handle is initialized in the program (𝑔Initialization).
• The database handle is connected to a database instance (𝑔Connection).
• All relevant behavior nodes 𝛽query are associated with the same database handle (𝑔HandleConsistency).
• Either all or none of such behavior tuples are emitted (𝑔Atomicity).
• All feasible program paths between the statements of previous and current behavior tuples do
not emit any behavior (𝑔PathConsistency).

Experimental Results for Real-World Programs. We acquired 10 real-world benchmark
programs from open-source C/C++ projects on GitHub that invoke the MySQL C Library APIs, with
code sizes ranging from hundreds to thousands of lines. Tab. 2 presents statistics from applying
Sprout to these benchmark programs, with a timeout limit of 30 minutes. Most columns are
inherited from Tab. 1, with the exception of the fourth column (PDB-f), which presents the total
number of database-related functions including atomic functions and composite functions in the
program. Sprout successfully migrates all 10 benchmark programs (100%) in the time limit. On
average, Sprout synthesizes programs that differ in 35.2 lines after migrating 11.8 function calls.

As in Sec. 6.3, we executed the original and migrated programs using the same test suites under
identical environments. All migrated programs compile successfully, and when executed, produce
outputs identical to the original. The migrated programs that perform merged queries exhibit an
average speedup of 52.3%. These results highlight the effectiveness, efficiency, and generality of
Sprout’s approach in migrating real-world programs across important domains beyond I/O.

7 Limitations
The limitations of Sprout arise mainly from the requirement to ensure soundness of migration.

Missed Migration Opportunities. While Sprout ensures that all migrated programs are
correct, it is conservative and does not guarantee that all invocations to the old APIs are migrated.
This limitation arises from a fundamental challenge in static analysis. For example, to determine
whether the code in Fig. 13c can be migrated, Sprout analyzes the potential values of file_size
on Line 9. This analysis occurs when the FSM in Fig. 3b is in state 𝑆1 and the semantic guard 𝑔Size
is being checked. This guard requires that file_size represents only the size of the file connected
by fd. However, the over-approximated value-flow graph indicates that file_size can also hold
the value generated on Line 6. This value is not known to be the size of the file connected by fd,
which violates 𝑔Size. Thus, Sprout does not migrate this case. If variable cond can be either true or
false, then this case is indeed not migratable, and Sprout correctly refuses to migrate it. If cond is
in fact always false, then this case represents a missed migration opportunity. In practice, however,
this issue arises infrequently in our experiments. We attribute it to developers often following best
practices to ensure variables keep their intended meanings.

Manual Specification Effort. Sprout requires experts to specify API semantics, which can
sometimes be challenging. We anticipate that this cost is relatively small. Firstly, it is a one-time task
performed by experts, for example experts who invented the storage systems that provide those
APIs. Once specified, the expert API knowledge can be applied across a wide range of software
applications that invoke such APIs or migrate towards those APIs, offering substantial automation
benefits to users and developers at scale. Secondly, in our experiments, each API specification
took our lead author less than 15 minutes on average to build from scratch, where most time was
spent on understanding natural language documentation and seeking clarifications with operating
system experts. The writing of the specification itself took under 5 minutes.
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Manual Customization Effort. Although our implementation provides open interfaces in its
framework, adapting Sprout to a different application domain requires developers to manually
formalize API specifications and implement the migration rules for the new domain. Nevertheless,
we anticipate that the cost of such customizations is small compared to the core components of our
approach (see Sec. 6.4) and that the benefits of automated migration are substantial.

Compatibility with LLVM IR. Our current Sprout implementation performs static analysis
on LLVM IR, so it works only with languages compatible with LLVM IR. However, our approach is
adaptable to other languages with similar frameworks for pointer analysis and value-flow analysis.

8 Related Work
Rule-based Transformation Synthesis for Upgrading Dependencies. The most closely

related line of research synthesizes semantic patches from user-provided examples for repetitive
edits in the Linux kernel [46, 77]. Several other techniques synthesize rules for textual modifications
in the source code [20, 23, 35, 39, 53, 59, 60, 90], often by summarizing transformation rules
from user-provided example edits or mined patches in similar codebases. More broadly, there
is a large body of research on updating downstream programs when library dependencies are
upgraded [12, 14, 16, 22, 56, 59, 87] that mainly focus on editing one API invocation at a time and
rely on a perfect match between the semantics of different versions of the same API. In contrast,
Sprout (1) automatically synthesizes previously unknown transformations to reduce human effort,
(2) does not require existing examples of similar and successfully migrated programs, (3) enables
many-to-many, many-to-one, one-to-many, and one-to-one API migrations, and (4) guarantees
behavioral equivalence between the original and migrated programs through static analysis.

Replacing Data Structures through Equivalence Checking. Some techniques synthesize
alternative implementations for an existing program [33, 65, 76, 78, 80, 86, 91], among which the
most closely related ones synthesize programs for replacement data structures [65, 76, 91]. Most of
these techniques rely on verifying program equivalence [11, 13, 92–94], often limited to relatively
simple data structures and programs. These techniques are not directly applicable to migrating
I/O APIs that may perform sophisticated operations on system resources. In contrast, Sprout is
capable of migrating such sophisticated APIs, and it does so by modeling the I/O API invocations
with specifications and ensuring correctness through typestate analysis and pointer analysis.

Neural Approaches for Program Synthesis. Program synthesis using machine learning and
LLM-based neural approaches is an active research area [2, 6, 19, 36, 37, 57, 58, 95]. These techniques
are general and scalable but are often limited in correctness due to their predictive nature [5],
especially with large codebases. Challenges include reasoning with long contexts [44, 47] and a
tendency to hallucinate [34]. In contrast, Sprout ensures formal correctness through static analysis.

Other Applications of Static Analysis. Static analysis techniques, such as typestate analysis,
are predominantly designed for bug detection [6, 7, 21, 48, 69, 79, 84]. ReBA [17] uses static
analysis for software evolution, specifically, it uses flow-insensitive pointer analysis to accommodate
different library versions by generating a compatibility layer. In contrast, Sprout directly modifies
a program to generate an efficient migrated version, and it ensures soundness with a flow-, field-
sensitive pointer analysis and Andersen’s pointer analysis [66].

9 Conclusion
We propose a novel automated technique for migrating software to new I/O APIs, focusing on
the preservation of program semantics through behavioral equivalence. Experimental results with
real-world C programs highlight the effectiveness, efficiency, and generality of our approach.
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