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Abstract

We present KONURE, a new system that uses active learning to
infer models of applications that access relational databases.
KoNURE comprises a domain-specific language (each model
is a program in this language) and associated inference al-
gorithm that infers models of applications whose behavior
can be expressed in this language. The inference algorithm
generates inputs and database contents, runs the application,
then observes the resulting database traffic and outputs to
progressively refine its current model hypothesis. Because
the technique works with only externally observable inputs,
outputs, and database contents, it can infer the behavior of
applications written in arbitrary languages using arbitrary
coding styles (as long as the behavior of the application is
expressible in the domain-specific language). KONURE also
implements a regenerator that produces a translated Python
implementation of the application that systematically in-
cludes relevant security and error checks.

CCS Concepts «Software and its engineering — Source
code generation; Domain specific languages; Software
reverse engineering.
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1 Introduction

Progress in human societies is cumulative — each new gen-
eration builds on technology, knowledge, and experience ac-
cumulated over previous generations. Software collectively
comprises one valuable store of human knowledge and ex-
perience as concretely realized in applications and software
components. But there is currently no easy way to extract
this knowledge and experience from its original context to
productively deploy it into the new contexts that inevitably
arise as societies evolve over time.

We present a new approach that uses active learning to
infer models that capture the full core functionality of target
applications or components. These models comprise a mo-
bile reification of the original functionality that can then be
regenerated to obtain a new, clean version of the functionality
specialized for immediate deployment into new languages,
systems, or contexts. The regeneration can also improve the
application or component by (1) discarding coding errors, (2)
automatically inserting security and/or privacy checks into
the regenerated code, and/or (3) improving the performance
by applying optimizations appropriate for the new platform
or context. In the longer term, active learning plus regenera-
tion may also enable new development methodologies that
work with simple prototype implementations as (potentially
noisy) specifications, then use regeneration to automatically
obtain clean, efficient implementations specialized for the
specific context into which they will be deployed.

Applications that access databases are ubiquitous in com-
puting systems. Such applications translate commands from
the application domain into operations on the database,
with the application constructing strings that it then passes
to the database to implement the operations. Web servers,
which accept HTTP commands from web browsers and in-
teract with back-end databases to retrieve relevant data,
are one particularly prominent example of such applica-
tions. These applications are written in a range of languages,
often quickly become poorly-understood legacy software,
and, because they are typically directly exposed to Inter-
net traffic, have been a prominent target for security at-
tacks [12, 17, 34, 42, 43, 49, 50, 55]. Such applications there-
fore comprise a particularly compelling target for active
learning plus regeneration.
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1.1 KoONURE

We present a new system, KONURE, that implements active
learning plus regeneration for applications that access rela-
tional databases. KONURE systematically constructs database
contents and application inputs, runs the application with
the database and inputs, then observes the resulting database
traffic and outputs to infer a model of application behavior.
Domain-Specific Language: To make the inference prob-
lem tractable, KoNURE works with a domain-specific lan-
guage (DSL) that (1) captures common application behavior
and (2) supports a hierarchical inference algorithm that pro-
gressively explores application behavior to infer the model.
The inference algorithm (conceptually) maintains a current
hypothesis as a sentential form of the grammar that defines
the DSL. At each step it selects a nonterminal in this sen-
tential form, constructs inputs and database contents that
enable it to determine the one production to apply to this
nonterminal that is consistent with the behavior of the ap-
plication, configures the database, runs the application, then
observes the resulting database traffic and outputs to refine
the hypothesis by applying the inferred production to the
nonterminal. Although we designed the DSL to be an internal
representation that is invisible to users, it is straightforward
to provide direct access to the DSL so that users may write
programs directly in the DSL.

Guarantees: If the application conforms to one of the mod-
els defined by the DSL, then the algorithm is guaranteed
to (1) terminate and (2) produce an inferred program that
correctly models the full core functionality of the application.
Because KONURE interacts with the application only via its
inputs, outputs, and observed database interactions, it can
infer and regenerate applications written in any language or
in any coding style or methodology.

Benefits: Because the model captures core application func-
tionality, it can help developers explore and better under-
stand this functionality. KONURE can also regenerate the
application into a potentially different language and sys-
tematically applying coding patterns and additional checks
that are known to be safe. KONURE therefore targets several
use cases: (1) security and/or performance through safe re-
generated code, (2) portability to new platforms, (3) reverse
engineering, and (4) program understanding.

1.2 Key Inferrability Properties

The design of the KoNUre DSL, together with its associated
top-down inference algorithm, is a central contribution of
this paper. We next outline several key properties of the
design that enable inferrability via active learning.

In general, programs contain statements linked together
by control and data flow. To promote control-flow inferra-
bility, each statement in the DSL executes a query that is
directly observable in the intercepted database traffic. All
control flow is tied directly to the query results — If state-
ments test if their query retrieves empty data; For statements
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Figure 1. The KoNURE architecture, including a transparent proxy
interposed between the application and the database to observe the
generated database traffic.
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Figure 2. The KoNURE active learning algorithm iteratively refines
its hypothesis to infer the application.

iterate over all rows that their query retrieves, with all itera-
tions independent. These properties help KONURE generate
a focused, tractably small sequence of inputs and database
contents that (1) finds and traverses all relevant control-flow
paths and (2) completely resolves each For loop with a single
execution of two or more iterations.

To promote data flow inferrability, all data flows directly
from either input parameters or retrieved query results to
executed queries or outputs. KONURE infers the data flow
by matching concrete values in executed queries or outputs
against the input parameter or retrieved query result with
the same value. KONURE eliminates potential data flow am-
biguities by populating the input parameters and database
contents with appropriately distinct concrete values.

The DSL is designed to enable the formulation of all prop-
erties of interest as quantifier-free SMT formulas. KONURE
leverages this property to construct inputs and databases
that explore all relevant control-flow paths and deliver the
distinct values that enable KONURE to infer the data flow.

1.3 Experimental Results

We present case studies applying KONURE to five applications:
Fulcrum Task Manager [2], Kandan Chat Room [4], Enki
Blogging Application [1], Blog [3], and a student registration
application developed by a hostile DARPA Red Team to test
SQL injection attack detection and nullification techniques.
Our results show that KONURE is able to successfully infer
and regenerate commands that these applications use to
retrieve data from the database.
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1.4 Contributions

This paper makes the following contributions:

o Inference Algorithm: It presents a new algorithm for
inferring the behavior of database-backed applications.
Conceptually, the algorithm works with hypotheses repre-
sented as sentential forms of the grammar of KoNure DSL.
At each stage the algorithm systematically constructs data-
base contents and application inputs, runs the application,
and observes the resulting database traffic and outputs to
resolve a selected nonterminal in the current hypothesis.
This approach enables KONURE to work effectively with
unbounded model spaces to infer models that capture the
core functionality of the target class of applications.

o DSL Design: It presents a DSL for capturing specific com-
putational patterns typically implemented by database-
backed applications. The inference algorithm and DSL are
designed together to enable an effective active learning
algorithm that leverages the structure of the DSL to itera-
tively refine hypotheses represented as sentential forms in
the DSL grammar.

e Soundness and Completeness: It presents a key theo-
rem that states that if the behavior of the application con-
forms to the DSL, then the inference algorithm infers a
program that correctly captures the full core functionality
of the application.

o Regeneration: It shows how to regenerate new versions
of the application that implement safe computational pat-
terns and contain appropriate safety and security checks.
The regenerator encapsulates the knowledge required to
work effectively in the target domain and can eliminate
coding errors that lead to incorrect application behavior
or security vulnerabilities.

o Experimental Results: It presents results using KONURE
to infer and regenerate commands written in Ruby on Rails
(RoR) and Java. The results highlight KONURE’s ability to
infer and regenerate robust, safe Python implementations
of commands originally coded in other languages.

2 Example

We next present an example that illustrates how KONURE
infers and regenerates a database-backed application. The
example is a student registration system adapted from an
application written by an independent evaluation team hired
by an agency of the United States Government to evaluate
techniques for detecting and nullifying SQL injection attacks.
The application was written in Java and interacts with a
MySQL database [76] via JDBC [60].

Command: The application implements the following com-
mand: “liststudentcourses -s s -p p”, where the input
parameter s denotes student ID and p denotes password. The
application first checks whether the student with ID s has
password p in the database. If so, the application displays the
list of courses for which this student has registered, along
with the teacher for each course.
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Database: The database contains: (1) a student table, which
contains student ID (primary key), first name, last name,
and password, (2) a teacher table, which contains teacher
ID (primary key), first name, and last name, (3) a course
table, which contains course ID (primary key), name, course
number, and teacher ID, and (4) a registration table, which
contains student ID and course ID.

First Execution: The KoNURE inference algorithm config-
ures an empty database, then executes the application with
the command “liststudentcourses -s @ -p 1, which
sets input parameters s and p to 0 and 1, respectively. KONURE
uses a transparent proxy (Figure 1) to observe the resulting
database traffic, which the proxy collects as the concrete trace
of the execution (Figure 3a). The query uses the constant
’0’, which comes from the input parameter s, and retrieves
no data from the (empty) database. For this execution, the
application produces no output.

Based on this information, KONURE rewrites the concrete
trace to replace concrete values (such as ’@’) with origin
locations, which identify the source of each value. The result
is a corresponding abstract trace (Figure 3b). This abstract
trace contains a query g1 that selects all columns from the
student table. The selection criterion is that the student ID
must equal the input parameter s. KONURE derives the origin
locations by matching concrete values in the concrete trace
against input values and values in the database.

KoNuURE DSL: Figure 4 presents the (abstract) grammar for
the KoNnure DSL. A program consists of a sequence of Query
statements potentially terminated by an If or For statement.
An If statement does not test an arbitrary condition — it
instead only tests if the Query in the condition retrieves
empty or nonempty data. Similarly, a For statement does not
iterate over an arbitrary list — it instead iterates over the rows
in its Query, executing its else clause if its Query retrieves
zero rows. These restrictions (among others, Section 3.1) are
key to the inferrability of the DSL.

First Production: The first execution generated a single
query (Figure 3a). KONURE determines if this query came
from a Seq, If, or For statement as follows. Working with the
abstract trace in Figure 3b, KONURE generates three sets of
constraints. Each set specifies input parameters and database
contents. The first set specifies that the query retrieves zero
rows. The second specifies that the query retrieves at least
one row. The third specifies that the query retrieves at least
two rows. KONURE invokes an SMT solver to obtain a context
for each set of constraints. Each context identifies inputs and
database values that satisfy the constraints.

In the example the third set of constraints is unsatisfiable,
because the query accesses the primary key and there is at
most one row for each value of the primary key. The first
and second sets of constraints are satisfiable and therefore
produce viable contexts. KONURE executes the application in
each of these contexts. Figures 3a and 5a present the recorded
concrete traces; Figures 3b and 5b present the corresponding
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SELECT * FROM student WHERE id = '0'

(a) Concrete trace from the first execution. The database is empty
and the query retrieves zero rows.

select student.id, student.password, student.
firstname, student.lastname

where student.id=s

ql:

(b) Abstract trace from the first execution, converted from the
concrete trace in Figure 3a. The conversion replaces the constant
’@’ with its origin location, the input parameter s.

Figure 3. First execution trace

Prog = €| Seq | If | For
Seq = Query Prog
If = if Query then Prog else Prog
For = for Query do Prog else Prog
Query = 1y« select Col* where Expr; print Orig*
Expr = true | Expr A Expr | Col=Col | Col=Orig
Col = t.c
Orig = x|y.Col
x, y € Variable, t € Table, c¢ € Column

Figure 4. Grammar for the KONURE DSL

abstract traces. These traces indicate that the observable
behavior of the application differs depending on whether
the first Query retrieves no rows (Figures 3a and 3b) or at
least one row (Figures 5a and 5b). KONURE concludes that
the first Query comes from an If statement and produces the
first hypothesis in Figure 6. This hypothesis corresponds to
applying an If production to the topmost Prog nonterminal.
Second Production: KONURE next resolves the P; nontermi-
nal in the first hypothesis. Working with the abstract trace in
Figure 5b, KONURE generates three sets of constraints that (1)
force the first query (q1) to retrieve at least one row (this con-
straint forces the application to execute the then branch of
the topmost If statement) and (2) force the second query (q2)
to retrieve no rows, at least one row, and at least two rows,
respectively. Once again, the first two sets of constraints
produce viable contexts; the third is unsatisfiable.

Figure 5a presents the trace from the execution in which
the second query retrieves no rows; Figure 7a presents the
trace from the execution in which the second query retrieves
at least one row. Because the traces differ (similarly to the
above First Production), KONURE resolves the nonterminal P;
to an If statement. Figure 8 presents the resulting hypothesis.
Third Production: KONURE next resolves the P; nontermi-
nal. Working with the abstract trace produced by the pre-
vious step (Figure 7b), KONURE generates constraints that
force the application to execute Ps, once again with zero, at
least one, or at least two rows retrieved by the first query in
P; (g3 in Figure 7b). The solver generates viable contexts for
all three sets of constraints. For the context with at least two
rows retrieved, KONURE collects the trace in Figure 9.

In this execution the third query retrieves two rows. The
KoNURE loop detection algorithm examines the trace, detects
the repetitive pattern in the last four queries, concludes that
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SELECT * FROM student WHERE id = '5'
SELECT * FROM student WHERE id = '5' AND

password = '6"'

(a) Concrete trace from the second execution. The context is con-
figured to ensure that the first query retrieves at least one row.

gl: select student.id, student.password, student.
firstname, student.lastname
where student.id=s

g2: select student.id, student.password, student.

firstname, student.lastname
where student.id=s A student.password=p

(b) Abstract trace from the second execution, converted from the
concrete trace in Figure 5a. The conversion replaces the constants
’5” and ’ 6’ with their origin locations, input parameters s and p.

Figure 5. Second execution trace

if y; «select student.id, student.password, student
.firstname ,student.lastname

where student.id=s then P, else P;

Figure 6. Hypothesis after resolving the topmost Prog nonterminal
to an If statement.

o
e

SELECT * FROM student WHERE id

SELECT * FROM student WHERE id =
password = '2'

SELECT * FROM course c JOIN registration r ON r.
course_id = c.id WHERE r.student_id = "1'

AND

(a) Concrete trace from the third execution. The context is config-
ured so that the first and second queries retrieve at least one row
and the third query retrieves zero rows.

gl: select student.id, student.password, student.
firstname, student.lastname
where student.id=s

g2: select student.id, student.password, student.
firstname, student.lastname
where student.id=s A student.password=p

g3: select course.id,course.name,course.

course_number ,course.size_limit, course.

is_offered, course.teacher_id,registration.

student_id,registration.course_id

where registration.course_id=course.id A
registration.student_id=s

(b) Abstract trace from the third execution, converted from the
concrete trace in Figure 7a. The conversion replaces the constants
’1” and ’ 2’ with their origin locations, input parameters s and p.

Figure 7. Third execution trace

if y; < select student.id, student.password, student
.firstname, student.lastname
where student.id=s then {
if y, < select student.id,student.password,
student.firstname, student.lastname
where student.id=s A student.password=p
then P; else P, } else P,

Figure 8. Hypothesis after resolving P; (Figure 6).
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SELECT * FROM student WHERE id

SELECT * FROM student WHERE id
password = '4'

SELECT * FROM course c JOIN registration r ON r.

3
13

AND

course_id = c.id WHERE r.student_id = '3'

SELECT firstname, lastname FROM teacher WHERE id
= '16"

SELECT count(*) FROM registration WHERE
course_id = '12'

SELECT firstname, lastname FROM teacher WHERE id

K
SELECT count(*) FROM registration WHERE
course_id = '7'

Figure 9. Concrete trace from an execution to resolve P3 (Figure 8).
The third query retrieves two rows. The final four queries are
generated by a loop that iterates over the retrieved two rows.

if y; < select student.id, student.password, student
.firstname, student.lastname
where student.id=s then {
if y, < select student.id,student.password,
student.firstname,student.lastname
where student.id=s A student.password=p
then {
for y; < select course.id,course.name,course.
course_number ,course.size_limit, course.
is_offered, course.teacher_id,registration.
student_id,registration.course_id
where registration.course_id=course.id A
registration.student_id=s;
print ys.course.id,ys.course.teacher_id
do P5; else P; } else P, } else P,

Figure 10. Hypothesis after resolving P3 (Figure 8).

the application iterates over all of the rows retrieved from
the third query, and resolves P; to a For statement.

For this execution the application also produces the id and
teacher_id columns from the retrieved rows of the course
table as output. The updated hypothesis (Figure 10) therefore
contains a Print statement that prints these values.
Regeneration: KONURE proceeds as above, systematically
targeting and resolving nonterminals in the hypothesis, un-
til all of the nonterminals are resolved and it has inferred
a model of the command. It can then regenerate the com-
mand, inserting security/safety checks as desired. Our cur-
rent KONURE implementation regenerates Python code using
a standard SQL library to perform the database queries. This
regeneration eliminates a seeded SQL injection attack vul-
nerability present in the original program.

Noisy Specifications: Because the active learning algorithm,
guided by the DSL, tends to generate contexts that conform
to common use cases, KONURE can work productively with
programs that contain obscure corner-case bugs not exer-
cised during the inference [51, 61]. The SQL injection attack
vulnerability present in the original Student Registration
application but discarded in the regeneration is an example
of just such an obscure corner case bug. We view such pro-
grams as noisy specifications. Given the known challenges
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developers face when attempting to deliver correct programs,
we consider the ability of KONURE to work successfully with
such noisy specifications as a significant advantage of the
overall approach.

Developer Understanding: In a deployed system, we ex-
pect that developers would be given examples and docu-
mentation that outlines the KoNURE DSL and the model of
computation. We expect that this information, along with
experience using KONURE, would enable developers to work
productively with KONURE using programs written in their
language of choice.

3 Design

The KoNURE inference algorithm is constructive [11] — in-
stead of enumerating candidate solutions, the algorithm con-
structs the solution progressively every time KoNURE finds
an interesting behavior of the application. Conceptually, the
algorithm starts with a Prog nonterminal as its initial hypoth-
esis, then progressively resolves Prog nonterminals until it
completely infers the program. The algorithm (conceptually)
maintains a sentential form in the KoNURrg DSL, with non-
terminals denoting hidden parts that are left to infer. The
inference proceeds by expanding nonterminals until it ob-
tains a complete program. As KONURE recursively traverses
the paths through the program as expressed in the DSL, it
maintains path constraints that lead to the next part of the
program to infer. Instead of maintaining the current hypoth-
esis as an explicit sentential form, KONURE represents the
hypothesis implicitly in the data structures and recursive
structure of the inference algorithm as it executes.

3.1 KoNurREe Domain-Specific Language

Konugrek infers application functionality that can be expressed
in the KoNURE DSL. We present the grammar for the KONURE
DSL in Figure 4. Each query in this DSL performs an SQL
select operation that retrieves data from specified columns
in specified tables. Our current DSL supports SQL where
clauses that select rows in which one column has the same
value as another column (Col = Col) or the same value as a
value in the context (Col = Orig). Selecting from multiple ta-
bles corresponds to an SQL join operation. The query stores
the retrieved data in a unique variable (y) for later use. All
variables must be defined before they are used.

To enable the KoNURE inference algorithm to effectively
distinguish If statements from Seq statements, KONURE re-
quires the two branches of each If statement to start with
queries that have different skeletons (or one of the branches
must be empty). To facilitate effective loop detection, KONURE
requires the first query after any query that may retrieve
multiple rows to have a skeleton that is distinct from all
subsequent queries. KONURE also requires that the program
have no nested loops. Each Print statement is associated with
a query and only prints values retrieved by its query.
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Definition 1. The skeleton of a program P € Prog is a pro-
gram that is syntactically identical to P except for replacing
syntactic components derived from the Orig nonterminal
(Figure 4) with an empty placeholder <.

Definition 2. For any program P € Prog, P is the seman-
tically equivalent program obtained from P by discarding
unreachable branches in If and For statements, downgrading
For statements with empty loop bodies or loop bodies that
execute at most once to If statements, and downgrading If
statements with an unreachable branch or two semantically
equivalent branches to Seq statements.

Definition 3. For any program P € Prog, T(P) is the set of
queries in P that retrieve at least two rows in some execu-
tion.! R(P) is the set of all queries Q in P with two subsequent
queries Q; and Q, such that Q; immediately follows Q in the
program, Q; does not appear as the first query of an else
branch of an If or For statement, Q; occurs after Q; in the
program, and Q; and Q; have the same skeleton. D(P) is a
predicate that is true if and only if the two branches of all
conditional statements in P start with queries with different
skeletons (or one of the branches is empty).

Definition 4 (The KoNure DSL). We define the KONURE
DSL as the set of programs X C Prog defined as:

K = {P | P € Prog, T(P) N R(P) = 0, D(P) = true}

The first restriction, T(P) N R(P) = 0, states that if a query
may retrieve multiple rows from the database, then the next
query does not share a skeleton with any other subsequent
query in the program. This restriction facilitates loop de-
tection by eliminating repeated queries that do not come
from iterations of the same loop (Section 3.2).? The second
restriction, D(ﬁ) = true, states that the two branches of
any If statement in P must start with queries with different
skeletons (or one of the branches must be empty). Intuitively,
this restriction enables KoNURE to efficiently distinguish Seq
from If statements (Section 3.5).

Because of the focused expressive power of the KONURE
DSL, it is possible to decide all relevant conditions statically,
rewrite P to P, and determine if P € K. Note that because
programs P € X may reference values using distinct but
semantically equivalent variables, X is not a true canonical
form, i.e., there may be distinct but semantically equivalent
programs in XK. It is possible, however, to eliminate such
equivalences by replacing each variable with the first se-
mantically equivalent variable to occur in the program. This
transformation is implementable with an SMT solver and
eliminates distinct but semantically equivalent programs to
deliver a true canonical form for the KoNURE DSL.

1 A query will never retrieve more than one row if, for example, it selects
rows that have a specific primary key value.

2 Our implemented KONURE prototype deploys a more sophisticated loop
detection algorithm that enables it to relax this restriction.
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Expressiveness and Limitations: The DSL captures a wide
range of applications that display data from a database by
retrieving data based on inputs and database contents. Mean-
while, these applications are restrictive enough to be inferred
efficiently. To support more sophisticated control-flow logic
in database-backed applications, we anticipate that an infer-
ence algorithm would need to access more runtime informa-
tion or have more domain knowledge. Negative examples
that are straightforward to support include applications with
SQL queries that involve relational comparisons (besides
equality and membership checks), simple arithmetics, con-
stants, or aggregate functions. It is straightforward because
(1) we use an SMT solver that supports solving constraints
involving these operators and (2) the operators are directly
present in the intercepted SQL queries. Because experience
with SMT solvers in other contexts shows that these solvers
readily support formulas with these kinds of operators and
constraints, we do not anticipate any significant performance
issues with this extension.

3.2 KonNuRrE Inference Algorithm

We present the KONURE inference algorithm (Algorithm 1)
for a program P that implements a single command. For pro-
grams with multiple commands, KONURE uses Algorithm 1
to infer each command in turn. The algorithm configures
an empty database, sets the parameters to distinct values,
invokes Algorithm 2 to run the program and obtain an ini-
tial trace, then invokes Algorithm 3 to recursively infer the
program. The inference algorithm works with deduplicated
annotated traces ¢ that record one iteration of each executed
loop, so that the structure of the trace matches the corre-
sponding path through the program.

Definition 5. A context o = (o7,0p,0r) € Context (Fig-
ure 11) contains value mappings for the input parameters
(o1 € Input), database contents (op € Database), and re-
sults retrieved by database queries (og € Result). The input
context oy maps input parameter variables x € Variable to
concrete values. The database context op maps database
locations (identified by a table name, a row number, and a
column name) to concrete values. The results context og
maps each query result variable y € Variable to a list of
rows, with each value in each row identified by the table and
column from which it was retrieved.

Definition 6. We denote the concrete trace from executing a
program P € Prog in context o € Context as o(P) € CTrace
(Figure 12a). A concrete trace contains the intercepted SQL
traffic (specifically, the queries CQuery” and corresponding
retrieved rows CData*) and observed outputs CVal*.

Definition 7. | P | denotes the black box executable of a pro-

gram P € Prog, i.e., executing in context o € Context
produces the concrete trace o(P). Note that KONURE does

not access the source code of P when it executes .
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o € Context = Input X Database X Result
oy € Input = Variable — Value
op € Database = Table — Z~y — Column — Value
oRr € Result = Variable — Z~y — Table — Column — Value

Value = Int U String

Figure 11. KONURE contexts.

CTrace = CQuery* CData*; print CVal*
CQuery := SELECT CCol* FROM CJoin WHERE CExpr
CJoin =t | CJoin JOIN ¢ ON CCol = CCol
CExpr = true | CExpr AND CExpr | CCol = CCol
| CCol =CVal | CCol IN CVal*
CCol = t.c
CVal = ils
CData = CRow"
CRow = (CCol CVal)*
t € Table, ¢ € Column, i €lInt, s € String
(a) Concrete traces.
ATrace = AQuery* r*; print AOrig*
AQuery = y« select ACol™ where AExpr
AExpr = true | AExpr A AExpr | ACol = ACol
| ACol € AOrig*
ACol = t.c
AOrig = x| y.ACol
x, y € Variable, t € Table, c¢ € Column, r € Zs
(b) Abstract traces.

Figure 12. Grammars for concrete and abstract traces.

Definition 8. An origin location O € Orig in a program
P € Prog is an occurrence of a variable x or a column y.Col
in a query result y.

Definition 9. An abstract trace is the list of queries, along
with their results, that KONURE generates from a concrete
trace after replacing concrete values with their origin lo-
cations and replacing SQL syntax with the syntax of ab-
stract traces (Figure 12b). An abstract trace contains abstract
queries (AQuery™), row counts for each query (r*), and out-
put origin locations (print AOrig®). The main modifications
from a concrete trace are to replace each concrete value by
its origin location and to summarize the retrieved data with
row counts.

To infer the origin locations, KONURE maintains a con-
text, which keeps track of the concrete values available at
each origin location in the input and result components. One
complication is the possibility that two distinct origin lo-
cations may hold the same concrete value in an execution.
When such ambiguities occur, KONURE adopts a demand-
driven approach to obtain an unambiguous origin location
(Section 3.4). With the origin locations inferred, it is straight-
forward to rewrite the trace syntax as an abstract trace.
Definition 10. A query-result pair (Q,r) has a query Q €
Query and an integer r € Zs, that counts the number of
rows retrieved by Q during execution. Converting an abstract
trace into a list of query-result pairs is straightforward.
Definition 11. A loop layout tree for a program P € Progis a
tree that represents information about the execution of loops.
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Each node in the loop layout tree corresponds to a query in
P. Each node represents whether a loop in P iterates over
the corresponding query multiple times. In particular, when
a loop in P iterates over a query multiple times, the query’s
corresponding node in the loop layout tree has multiple
subtrees, with each subtree corresponding to an iteration of
the loop. We convert a list of query-result pairs into a loop
layout tree in DETECTLOOPS, which we discuss below.
Definition 12. An annotated trace is an ordered list of an-
notated query tuples. Each tuple, denoted as (Q, r, A), has
three components obtained from a query Q € Query. The
first component is the query Q. The second component is
the number of rows retrieved by Q during an execution. The
third component is the annotated information of whether a
loop was found to iterate over data retrieved by Q. If such
loop was found then A is a nonnegative integer that indi-
cates the iteration index. If no such loop was found then
A = NotLoop. Each path from the root of the loop layout
tree to a leaf generates a corresponding annotated trace.
Definition 13. A path constraint W = ({Q1,71,51)s - - -
(Qn»Tn, Sn)), consists of a sequence of queries Qy,...,Qp €
Query, row count constraints ry, .. ., r,, and boolean flags
S1,...,Sn. BEach r; specifies the range of the number of rows
in a query result, denoted as one of (= 0), (= 1), or (> 2).
Each s; is true if a loop iterates over the corresponding
retrieved rows and false otherwise.

Definition 14. An annotated trace t is consistent with path
constraint W, denoted as t ~ W, if the path specified in
W is not longer than ¢, each query in t matches the corre-
sponding query in W, and each row count in ¢ matches the
corresponding requirement in W.

GETTRACE: Algorithm 2 takes an executable program ,
path constraint W, and context o as parameters. It first
invokes EXECUTE, which runs in context o to obtain
the flat list e of query-result pairs converted from the con-
crete trace that | P | generates when it runs. It then invokes
DEeTEcTLOOPS, which runs the KoNURE loop detection algo-
rithm to produce the loop layout tree [. Finally, MATCHPATH
generates an annotated trace that corresponds to a path
through [ consistent with the path constraint W.
ExEcuTE: The EXECUTE procedure takes an executable pro-
gram and a context ¢ = (o7, 0p,or) € Context. It first
populates the database with contents specified in op and
then executes | P | with input parameters specified in o7. It
collects the outputs and database traffic, i.e., the concrete
trace o(P) (Figure 1). EXECUTE converts the concrete trace
into an abstract trace, converts the abstract trace into a list
of query-result pairs, then returns this list of pairs.
DEeTEcTLOOPS: The DETECTLOOPS procedure takes a list of
query-result pairs and constructs a loop layout tree. (1) If the
first query retrieves r > 2 rows, DETEcTLOOPs checks if the
skeleton of the second query is repeated exactly r times in
the tail of the trace. If the repetitions match, DETEcTLOOPS
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Algorithm 1 Infer an executable program

Algorithm 3 Recursively infer a subprogram

Input: is the executable of a program P € K.
Output: Program equivalent to P.

1: procedure INFER()

2: o « Database empty, input parameters distinct
3: t— GETTRACE(, Nil, o)

4: return INFERPROG(, Nil, t)
5: end procedure

Algorithm 2 Execute a program and deduplicate the trace
according to a path constraint

Input: is the executable of a program P € X.

Input: W is a path constraint.

Input: ¢ is a context that satisfies W.

Output: Annotated trace ¢, t ~ W, from executing with o.

1: procedure GETTRACE(, W, o)

2: e — EXECUTE(, o)

3: | < DeTECTLOOPS(€)
4 return MaTcaPATH(I, W)
5: end procedure

determines that a loop iterates over the first query in the
trace, splits the trace into r segments that each correspond
to an iteration of the loop, recursively constructs a loop
layout tree for each segment, and then inserts the recursively
constructed loop layout trees as the children of the first query.
(2) In all other scenarios, DETECTLOOPS determines that no
loop iterates over the first query in the trace, recursively
constructs a loop layout tree for the tail of the trace, and
then inserts the recursively constructed loop layout tree as
the child of the first query of the trace.
INFERPROG: Algorithm 3 implements the main KONURE in-
ference algorithm. This algorithm recursively explores all
relevant paths through the program, resolving Prog nonter-
minals as they are (conceptually) encountered. Algorithm 3
takes as parameters the executable of the program to
infer and a split annotated trace consisting of a prefix s; that
corresponds to an explored path through the program and a
suffix s, from the remaining unexplored part of the program.
The first Query Q in s, is generated by the next Prog nonter-
minal to resolve. KONURE therefore determines whether the
query Q was generated by a Seq, If, or For statement, then
recurses to infer the remaining parts of the program.
KoNURE makes this determination by examining three
deduplicated annotated traces ty, t;, and t,. All of these traces
are from executions that follow the same path to Q as s;. In
the execution that generated ty, Q retrieves zero rows, in the
execution that generated ¢, Q retrieves at least one row, and
in the execution that generated t;, Q retrieves at least two
rows. If KONURE detects a loop in ¢, over the rows that Q
retrieves, it infers that Q was generated by a For statement
(line 14 in Algorithm 3). Otherwise, it examines t, and #;
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Input: is the executable of a program P € X.

Input: s; is a prefix of an annotated trace.

Input: s; is a suffix of an annotated trace.

Output: Subprogram equivalent to P’s subprogram after trace sj.

1: procedure INFERPROG(, $1,52)

2: if s, = Nil then return e >Prog =€

3: end if

4: k < The length of s;

5: Q « The first query in sy

6: fori=0,1,2do

7: W; < MAKEPATHCONSTRAINT(s1, Q, i)

8: (fi ti) « SOLVEANDGETTRACE(, Wwi)

9: if f; then > Satisfiable
10: tiin — ti[l,...,(k+1)] > New trace prefix
11: tip — ti[(k+2),...] > New trace suffix
12: end if
13: end for
14: if f> and found loop on the last query in t; ; then
15: by «— INFERPROG(, 2.1, tz’z)

16: if fo then bf — INFERPROG(, to,1, to,2)
17: elseby —¢
18: end if
19: return “for Q do by else by” > Prog := For
20: else if fy and fi and ((tp,2 = Nil and t1,2 # Nil) or
(to,2 # Nil and 1,2 = Nil) or
the first queries in tg 2 and t1 2
have different skeletons) then
21: by — INFERPROG(, 1,1, t1,2)
22: bf — INFERPROG(, to, 1, t0,2)
23: return “if Q then b; else be” > Prog = If
24: else
25: if fo then b «— INFERPROG(, to, 1, t0,2)
26 elseb « INFERPROG(, 11,1, 11,2)
27: end if
28: return “Q b” > Prog := Seq
29: end if

30: end procedure

Algorithm 4 Obtain a deduplicated annotated trace that
satisfies a path constraint

Input: is the executable of a program P € X.
Input: W is a path constraint.
Output: The first component represents the satisfiability of W.
When satisfiable, the second component is an annotated trace
t wheret ~ W.
procedure SOLVEANDGETTRACE(, W)
o < SoLvE(W)
if 0 = Unsat then
return false, Nil
else
b GETTRACE(, W, o)
return true, ¢
end if

1:
2
3
4
5:
6
7
8
9: end procedure
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to determine if Q was generated by an If statement (line 20
in Algorithm 3) or a Seq statement (line 24 in Algorithm 3)
— conceptually, if the queries that follow Q in t; and # dif-
fer, then Q is generated by an If statement, otherwise it is
generated by a Seq statement.

KONURE obtains traces ty, t1, and t, by using MAKEPATH-
CONSTRAINT to construct three path constraints W, Wi, and
W,, then using an SMT solver to obtain contexts oy, 01, and
0y that cause | P | to produce (deduplicated annotated) traces
to, 1, and t; (Algorithm 4). If W; is satisfiable then #; ~ W;.

MAKEPATHCONSTRAINT takes the trace prefix s;, the sub-
sequent query Q, and an integer i. The procedure constructs
a new path constraint, W;, which specifies that any satisfy-
ing context must enable the program to execute down the
same path as sq, then perform query Q and retrieve a certain
number of rows as specified by i. In particular, if i = 0 then
Q is required to retrieve zero rows.If i = 1 or i = 2 then Q is
required to retrieve at least i rows.

Aspresented, Algorithm 1 (and associated soundness proof
Theorem 3) does not work with Print statements. Our imple-
mented KONURE prototype infers Print statements by corre-
lating values that appear in the output with values observed
in the database traffic. Recall that in the KoNURE DSL, each
Print statement is associated with a query and only prints val-
ues retrieved by its query. This restriction enables KONURE to
associate each Print statement with its corresponding query.

3.3 Path Constraint Solver

Definition 15. For a query Q € Query and a context o =
(o1,0p,0R) € Context, o(Q) denotes the result from evaluat-
ing Q in o. Evaluating Q involves replacing origin locations
in Q with their values in o; and og, rewriting the query
in SQL syntax, then performing the SQL query on op. The
query result contains an ordered list of rows. |o(Q)| denotes
the number of rows in ¢(Q). Q.y denotes the variable that
stores the retrieved data. c[Q.y + z] denotes the new con-
text after updating og to map Q.y to z.

Definition 16. A context o € Context satisfies a path con-
straint W = ({Q1, 71, 51)s - - - » {On>» rn» Sn)) if (1) a sequence of
contexts o1, ..., 0, € Context are updated according to the
evaluation of the queries Qy, . .., Q, in o and (2) |0;(Q;)| sat-
isfiesr; foralli = 1, .. ., n. Specifically, the context sequence
satisfies oy = o andforalli=1,...,n—1,

s; = false or |0y(Q;)| =0
s; = true and |o;(Q;)| = 1

Ging = 0i[Qi-y = 0:(Qi)],
76101y - Gk,

for some integer k; such that if |0;(Q;)| > 1then 1 < k; <
|oi(Q;)|. We call o, the context after updating o with W.

SoLvE takes a path constraint W and uses an SMT solver
to solve for a context o € Context that satisfies W. The pro-
cedure returns a satisfying o if it exists and returns “Unsat”
otherwise.
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Like many database test data generation approaches [23,
41, 68, 70, 71, 74], SOLVE uses a row-based approach to trans-
late path constraints into SMT formulas. For each query Q; in
W that is required to retrieve at least one or at least two rows,
SOLVE generates variables that model the required number
of rows of the relevant tables. It then generates constraints
that require the values of these variables to satisfy the selec-
tion criteria of Q;. It also generates constraints that require
primary keys to be unique.

For each query Q; that is required to retrieve zero rows,
SOLVE generates constraints that ensure that none of the
values in the relevant tables satisfy the selection criteria of
Q;. If Q; occurs in a loop, the constraints only enforce that
Q; retrieves zero rows in at least one iteration of the loop (as
opposed to always retrieving zero rows). Here, loop iterations
map easily to the rows of unknown variables, because loops
in the KoNUrE DSL are designed to iterate over rows of data.

3.4 Origin Location Disambiguation

Recall that an origin location O € Orig in a program P €
Prog is an occurrence of a variable x or a column reference
y.Col in P. Concrete traces contain intercepted queries exe-
cuted by the program. In these intercepted queries, the origin
locations have been replaced by the corresponding concrete
values from the execution. When KONURE converts concrete
traces into abstract traces, it restores the origin locations
by matching concrete values across query results and input
parameters to translate the concrete values back into their
corresponding origin locations.

Because KONURE uses a general SMT solver to obtain con-
texts o that satisfy specified path constraints W, the contexts
may introduce ambiguity by coincidentally generating the
same value in different input parameters or database loca-
tions. This ambiguity shows up as different origin locations
O; and O, that both contain the same concrete value to trans-
late. KONURE resolves the ambiguity as follows:

o KonURE first asks the solver if it is possible to reproduce the
path to the ambiguous concrete value with the additional
constraint that O; and O, hold disjoint values. If so, the
resulting execution resolves the ambiguity.

Otherwise, KONURE asks the solver if it is possible to re-
produce this path with the additional constraint that Oy
holds a value not in O,. If not, the values in O; are a subset
of the values in O,. KONURE similarly uses the solver to
determine if the values in O, are a subset of the values in
O;. If Oy and O, are subsets of each other, they hold the
same values and KONURE can use either origin location.
Otherwise, there exists an execution in which O; has at
least one value v not in O, (or vice-versa). KONURE asks the
solver to produce a context that generates this execution.
The resulting execution in this context resolves the ambi-
guity — if the value v ever appears in the same location
as the concrete value, then KONURE uses O; as the origin
location, otherwise it uses O,.
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3.5 Soundness Proof Outline

We next outline the structure of a soundness proof for the
core KoNURE inference algorithm (Algorithm 1).
Definition 17. Origin locations O, O, € Orig are equiva-
lent with respect to path constraint W, denoted as O; =y O,,
if for any context ¢ € Context that satisfies W, Oy, Oz hold
the same values in the context after updating o with W.
Definition 18. For a program P € Prog and a context ¢ €
Context, 0 + P exec € denotes evaluating P in o to obtain a
list of query-result pairs e. o + P |Jjo0ps | denotes evaluating
P in o to obtain a loop layout tree I.

Definition 19. For programs P, P’ € Prog and annotated

trace t, we use the notation P N P’ to denote that traversing
the AST of P from top to bottom, by following the row counts
in t, leads to a subtree P’.

Definition 20. The size of a program P € Prog is denoted
as ||P|| and defined as the number of times that the AST of P
applies a production to expand a “Prog” nonterminal.

Proposition 1 (Solver). For any path constraint W, the pro-
cedure SoLvE(W) returns a context o € Context if and only
if W is satisfiable.

Rationale. The path constraint solver outlined in Section 3.3
asks the SMT solver a question that is equisatisfiable as the
existence of a satisfying context. Since the logical formulas
are quantifier-free and involve only equality checks, their
satisfiability is efficiently decidable [18]. O

Proposition 2 (Disambiguation). For any program P € K
and context o € Context,if 0 + P exec €, EXECUTE(, o) =
e’;and e = ((Q1,71)5 .-+, (Qn,1n)), then e’ = ((Q{,rl) e,
(Qp. 1)), where Q; and Q7 are identical except for the use of
different but equivalent origin locations for any i = 1,...,n.

Rationale. The disambiguation procedure (Section 3.4) asks
the SMT solver a question that equivalently encodes the
relationship between origin locations. By Proposition 1, we
obtain a correct list of query-result pairs after disambiguating
the traces obtained from program execution. O

Theorem 1 (Loop Detection). For any program P € X and
context 0 € Context,if 0 + P [exec €and o F P ioops !
then DETECTLOOPS(e) = I.

Proof. By induction on the derivation of P. O

Theorem 2 (Core Recursion). For any programs P € X and
t t

P’ € Prog and annotated traces t, t,, if P S P and P’ S e

then INFERPROG(, t1,t2) and P’ are identical except for the

use of different but equivalent origin locations.

Proof. The proof first performs case analysis of the relation-
ship between the possible first production in P’, properties
of the path constraints W;, and values f;, t; ; from the execu-
tions of | P |in Algorithm 3 to show that Algorithm 3 chooses
the correct first production in P’. The proof then proceeds
by induction on the productions applied to derive P’. O
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Theorem 3 (Soundness of Inference). For any program P €
X, INFER() and P are identical except for the use of differ-
ent but equivalent origin locations.

Proof. The proof first shows that the initial trace ¢ at line 3

of Algorithm 1 satisfies P 5 €. The rest of the proof follows
from Theorem 2. O

Theorem 4 (Complexity). For any program P € X, the exe-

cution of INFER() calls the INFERPROG procedure at most
|| P|| times.

Each recursive call to INFERPROG constructs a subprogram
for P € XK. The algorithm does not need to backtrack because
it never makes an incorrect hypothesis choice. Each step is
conclusive — only one nonterminal expansion is possible.
The algorithm also does not involve an equivalence check.

The inference algorithm terminates when it has fully con-
structed the AST of P. More concretely, the number of re-
cursive calls to INFERPROG is linear in the size of the given
program. Critically, this number of executions is bounded
by the size of the source code of P, not by the number of
iterations that any loop executes. It works because any loop’s
iterations are independent from each other (Figure 4).

We prove Theorems 2 through 4 only for programs P € K
(and with no Print statements). However, the proofs rely
only on the black box execution of P in EXECUTE(, 0). The
soundness properties therefore hold for arbitrary programs
written in arbitrary languages as long as the program’s ex-
ternally observable behavior is equivalent to that of some
program P € X.

4 Experimental Results

We implemented a KONURE prototype and acquired five
benchmark applications to evaluate this prototype. Each
application takes commands as input, translates the com-
mands into SQL queries against the relational database, and
returns results extracted from the results of the queries.

4.1 Applications and Commands

Our benchmark applications include:

e Fulcrum Task Manager: Fulcrum [2] is an open source
project planning tool, built with Ruby on Rails (RoR), with
over 1500 stars on GitHub. Fulcrum maintains multiple
projects. Each project may contain multiple stories. Each
story may contain multiple notes. Fulcrum commands en-
able users to navigate the contents of projects, stories, and
notes, as well as the users who created these contents.
Kandan Chat Room: Kandan [4] is an open source chat
room application, built with (RoR), with over 2700 stars on
GitHub. Kandan maintains multiple chat rooms (so-called
channels) that users can access. Its commands enable users
to navigate chat rooms and messages (so-called activities)
and display relevant user information.



Using Active Learning to Synthesize Models of Applications ...

¢ Enki Blogging Application: Enki [1] is an open source
blogging application, built with RoR, with over 800 stars
on GitHub. Enki maintains multiple pages and posts, each
of which may have comments. Enki commands enable the
author of the blog to navigate pages, posts, and comments.
Blog: The Blog application is an example obtained from
the RoR website [3]. Blog maintains information about blog
articles and blog comments. It implements a command that
retrieves all articles and a command that retrieves a specific
article and its associated comments.

Student Registration: The student registration applica-
tion discussed in Section 2.

The Fulcrum, Enki, and Blog servers receive HTTP re-
quests, interact with the database accordingly, and respond
the client with an HTML page that contains the data re-
trieved. The Kandan server receives HTTP requests, inter-
acts with the database accordingly, and responds with JSON
objects that contain data retrieved and HTML templates to
display the JSON data. For these applications, the KONURE
prototype works with the retrieved database results after
they are automatically extracted from the surrounding HTM-
L/JSON code. Student Registration implements a command-
line interface that receives text commands, interacts with
the database accordingly, and responds with text output.

Based on our understanding and use of the applications,
we identified data retrieval commands that these applications
execute as part of their standard functionality. In general,
these commands step through tables, typically using results
from earlier look-ups to access the correct data in current
tables. As a command traverses tables, it collects data to
return to the user. Fulcrum uses five database tables, Kandan
uses four database tables, Enki uses five database tables, Blog
uses two database tables, and Student Registration uses five
database tables. For Fulcrum, we identified eight of 14 data
retrieval commands as potential inference candidates. For
Kandan, we identified six of 11, for Enki, four of ten, for Blog,
two of two, and for Student Registration, one of one.

We built virtual machines for executing these applications,
then configured our KONURE prototype to operate properly
in this context. Specifically, the Rails framework stores pass-
word hashes in the database. Based on the Rails configuration,
the Rails framework uses these hashes to perform a password
check at the start of specified commands. We configured our
KoNURE prototype to generate databases and parameters
that, during inference, always pass the password check. We
also support the insertion of boilerplate password checking
code into the regenerated code for specified commands. We
anticipate that the automated introduction of such boiler-
plate code will be standard in many usage contexts. We then
used KoNURE to infer and regenerate the commands. The
source code for the regenerated commands is available [5].

Table 1 presents statistics from running the KONURE pro-
totype on the commands. The first column (Command)
presents the name of the command. The second (Params)
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presents the number of input parameters for the command.
The third (App) presents the name of the application.

The next column (Runs) presents the number of execu-
tions that KONURE used to infer the command. Each execu-
tion involves a set of generated input values presented to
the application working with generated database contents.
All commands require fewer than 30 executions to obtain
a model for the command as expressed in the KoNnure DSL.
The next column (Solves) presents the number of invoca-
tions of the Z3 SMT solver that KONURE executed to infer
the model for the command. Because KONURE may invoke
the SMT solver multiple times for each inference step, the
number of Z3 invocations is larger than the number of ap-
plication executions. The next column (Time) presents the
wall-clock time required to infer the model for each com-
mand. We measured time on a Ubuntu 16.04 virtual machine
with 2 cores and 2 GB memory. The host machine uses a
processor with 4 cores (3.4 GHz Intel Core i5) and has 24 GB
1600 MHz DDR3 memory. The times vary from less than a
minute to about two hours. In general, the times are posi-
tively correlated with the number of solves, the length of the
programs, and the number of potentially ambiguous origin
locations. Most of the inference time was spent on solving for
alternative database contents to satisfy various constraints.
The inference time also includes the time required to set
up, tear down, and execute the applications (and their web
servers) in the KONURE environment.

The remaining columns present statistics from the regen-
erated Python implementations. The LoC, SQL, If, For, and
Output columns present the number of lines of code, SQL
statements, If statements, For statements, and the number of
lines that generate output. We note that the regenerated pro-
grams are free of SQL injection attack vulnerabilities. These
vulnerabilities are present in the original student registration
application from the DARPA Red Team.

We recruited a software engineer with three years of expe-
rience working with Ruby on Rails applications to evaluate
the KoNURE inference and regeneration by comparing the
original Ruby on Rails and regenerated Python versions of
each command. This manual comparison indicated that the
inferred and regenerated commands were consistent with the
original Ruby on Rails implementations. The evaluation also
highlighted how the Rails framework, specifically the Ac-
tiveRecord object relational mapping abstraction, implicitly
generates substantial database traffic as it assembles the ob-
ject state (including the state of objects on which it depends)
when initially loading the object. This code that generates
this database traffic is explicit and therefore directly visible
in the regenerated Python code.

4.2 Performance on Synthetic Commands

We evaluate the scalability of the inference algorithm with
experiments on the following classes of synthetic commands.
The source code for these commands is available [5].
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Table 1. Inference effort and regenerated code size

Command Params App Runs Solves Time LoC SQL If For Output
get_home 1 Fulcrum 5 43 8 mins 21 5 1 0 9
get_projects 1 Fulcrum 5 43 8 mins 21 5 1 0 9
get_projects_id 2 Fulcrum 12 124 29 mins 25 8 2 0 8
get_projects_id_stories 2 Fulcrum 11 42 7 mins 31 8 3 0 11
get_projects_id_stories_id 3 Fulcrum 12 50 8 mins 31 9 30 11
get_projects_id_stories_id_notes 3 Fulcrum 11 41 8 mins 24 9 30 4
get_projects_id_stories_id_notes_id 4 Fulcrum 13 46 10 mins 28 10 4 0 4
get_projects_id_users 2 Fulcrum 12 124 30 mins 25 8 2 0 8
get_channels 1 Kandan 21 125 105 mins 63 16 4 2 27
get_channels_id_activities 2 Kandan 23 242 39 mins 49 16 6 0 13
get_channels_id_activities_id 3 Kandan 14 18 7 mins 25 11 30 3
get_me 1 Kandan 11 139 6 mins 44 8 30 25
get_users 1 Kandan 15 236 9 mins 67 11 30 45
get_users_id 2 Kandan 11 139 6 mins 44 8 30 25
get_admin_comments_id 1 Enki 2 5 22 secs 10 1 0 0 5
get_admin_pages 0 Enki 2 22 secs 13 2 1 0 4
get_admin_pages_id 1 Enki 2 5 23 secs 9 1 0 0 4
get_admin_posts 0 Enki 3 2 33 secs 16 3 1 1 3
get_articles 0 Blog 2 11 21 secs 12 2 0 0 6
get_article_id 1 Blog 6 29 42 secs 16 3 1 0 6
liststudentcourses 2 Student 6 20 41 secs 24 5 3 1 3
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Figure 13. Performance on synthetic commands

Simple Sequences (SS): A sequence of different queries,
without any conditional or loop statements. Each query
does not reference any previously retrieved data.

Nested Conditionals (NC): A series of nested conditional
statements. Each except the innermost If statement has a
nested If statement in the then branch. The innermost If
statement has a query in the then branch. None of the
queries reference previously retrieved data.
Unambiguous Long Reference Chains (UL): Like (NC),
but each query references data retrieved by the previous
query when the data is nonempty.

Ambiguous Long Reference Chains (AL): Like (UL),
but each then block has an additional query before the
nested If statement. This additional query retrieves a su-
perset of the data that will be retrieved by the next query.
e Ambiguous Short Reference Chains (AS): Like (NC),
but each then block has an additional query before the

nested If statement. This additional query retrieves a su-
perset of the data that will be retrieved by the next query,
which prints the retrieved data.

We expect the current KONURE implementation to (1) scale
well for (SS) and (NC) commands — the fact that the queries
are independent makes it straightforward to translate path
constraints to a small number of logical formulas, (2) scale
well for (UL) commands, because disambiguation is unneces-
sary, (3) scale poorly for (AL) commands, because the number
of disambiguation constraints grows rapidly as the length
of the query reference chain increases, and (4) scale well for
(AS) commands, because the reference chains are short.

For each class above, we built representative commands
with varying code sizes. We then used KOoNURE to infer each
command. Figure 13 presents statistics from running KONURE
on these synthetic commands. For SS commands (Figure 13a),
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the horizontal axis presents the number of queries in the
command. For the remaining commands (Figures 13b-13e),
the horizontal axis presents the number of conditionals in the
command plus one. The left vertical axis presents the number
of runs, solves, or lines of code. The lines Runs (executions
of the command), Solves (invocations of Z3), and LoC (lines
of code in the command) use this axis. The first right vertical
axis presents the inference time in seconds. The line Time
(wall-clock time for inference) uses this axis. The second
right vertical axis presents the number of constraints that
KonNURrE sends to the SMT solver during inference. The lines
PathCstr (constraints to enforce an execution path) and
DisamCstr (constraints to disambiguate origin locations)
use this axis. In Figure 13d, KONURE ran out of memory after
the version with five conditionals.

Discussion: KoNURE scales well for (SS), (NC), (UL), and (AS)
commands, which is consistent with results in Section 4.1.
KoNURE does not scale well for (AL) commands, where the
major performance bottleneck is sending the solver disam-
biguation constraints (Section 3.4). We did not optimize
KONURE to generate a small number of disambiguation con-
straints, so the communication dominates the inference time.
After Z3 receives constraints, it solves them quickly.

We anticipate that commands with ambiguous long refer-
ence chains will occur rarely in practice, as the structure of
database tables typically supports the application function-
ality well enough to access the desired data by navigating
through only several tables. The four commands from Table 1
with the longest inference times (get_projects_id, get_
projects_id_users, get_channels, and get_channels_
id_activities) all infer in feasible times. We therefore an-
ticipate the inference algorithm will scale to handle real
applications.

Since we expect ambiguous long reference chains to occur
rarely, we did not optimize KoNURE for this case. If this issue
becomes important in practice, a way to mitigate it would
be to develop a solver that returns maximally distinct values.
This solver would ensure that unrelated origin locations hold
disjoint values.

Because KONURE analyzes each command separately, it
scales linearly with the number of commands. Therefore, it
easily scales to handle applications with many commands,
which is often the primary source of complexity.

5 Related Work

Active Learning: Active learning is a classical topic in ma-
chine learning [64]. Our approach is characterized by its
extensive exploitation of structure present in the program
inference task: (1) learning outcomes specified by a DSL, (2)
hypotheses as sentential forms in the DSL, and (3) learning
by resolving nonterminals in the current hypothesis.

Program Synthesis: The vast majority of program synthe-
sis research works with a given set of input/output exam-
ples [9, 16, 29-32, 40, 47, 56, 57, 67, 73, 75, 78—80]. Because
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the examples typically underspecify the program behavior,
there are often many programs that satisfy the examples. The
synthesized program is therefore typically selected according
to either the choices the solver makes [47] or a heuristic that
ranks synthesized programs (for example, ranking shorter
programs above longer programs) [29, 32, 40]. KONURE, in
contrast, uses active learning to choose inputs and database
contents that eliminate uncertainty and obtain a model that
completely captures the core application functionality.

SyGusS identifies a range of program synthesis problems
for which it is productive to structure the search space as a
DSL [9]. Unlike SyGuS, KoNURE deploys a top-down infer-
ence algorithm that progressively refines a working hypoth-
esis represented as a sentential form of the DSL grammar.
Unlike the vast majority of solver-driven synthesis algo-
rithms (which require finite search spaces), KONURE works
effectively with an unbounded space of models.

LaSy works with a sequence of user-provided input/out-
put pairs to iteratively generalize an overspecialized pro-
gram [54]. KONURE, in contrast, (1) automatically generates
a sequence of inputs and database contents that uniquely
identify the program within the DSL, (2) observes not just
inputs and outputs, but also the traffic between the database
and the application, and (3) uses a top-down approach that
iteratively resolves DSL grammar nonterminals as opposed
to a bottom-up approach that replaces overspecialized code
fragments.

[13] presents a static technique that rewrites source code
to optimize the execution of loops. KONURE, in contrast, does
not work with the source code and uses active learning over
program executions to infer the program behavior.

To better evaluate the value of active learning in our con-
text, we implemented a system that observes inputs, outputs,
and database traffic generated during normal use to infer
models of programs that access databases [65]. The results
show that this approach often fails to infer the full function-
ality of the application because it often misses infrequent
corner cases. Wrapping a standard CEGIS-style loop [67]
around this system would require finite programs (whose
input is bounded and terminate on all inputs after a bounded
number of operations) as specifications. In contrast, KONURE
(1) uses active learning to find inputs, as opposed to asking
the user for examples or specifications, (2) adopts a syntax-
guided approach, as opposed to using a flat solver-based
approach, (3) works with database-backed programs where
the size of input data is unbounded, and (4) infers models
within a countably infinite space of models defined by a DSL.
Model Inference: Our previous research produced an active
learning technique for black-box inference of programs that
manipulate key/value maps [62]. KONURE, in contrast, also
observes database traffic, works with a broader and more
expressive class of applications, and deploys a top-down,
syntax-guided inference algorithm (as opposed enumerating
store/retrieve pairs as in [62]).
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Brahma implements oracle-guided synthesis for loop-free
programs that compute functions of finite-precision bit-vector
inputs [48]. Brahma finitizes the synthesis problem by work-
ing with a finite set of components, with each component
used exactly once in the synthesized model. KONURE, in con-
trast, works with an infinite space of models.

Mimic traces memory accesses to synthesize a model of
a traced function [44]. It uses a random generate-and-test
search over a space of programs generated by code mutation
operators. There is no guarantee that the generated model
is correct or that the search will find a model if one exists.

Other related techniques include an active learning tech-
nique for learning commutativity specifications of data struc-
tures [36], a technique for learning program input grammars
[14], a technique for learning points-to specifications [15],
and a technique for learning models of the design patterns
that Java computations implement [46]. Unlike KONURE, all
of these techniques focus on characterizing specific aspects
of program behavior and do not aspire to capture the com-
plete behavior of the application.

State Machine Model Learning: State machine learning al-
gorithms [7, 10, 20, 22, 33, 39, 45, 52, 59, 69, 72] construct par-
tial representations of program functionality in the form of
finite automata with states and transition rules. State fuzzing
tools [6, 28, 58] hypothesize state machines for programs.
Network function state model extraction [77] uses program
slicing and models the sliced partial programs as packet-
processing automata. KONURE, in contrast, infers complete
application functionality (as opposed to a partial model of
the application) and can support application regeneration.
Dynamic Analysis for Program Comprehension: There
is a large body of research on dynamic analysis for program
comprehension, but (due to complicated logic of Web tech-
nologies) relatively little of this research targets Web appli-
cation servers [26]. WAFA [8] analyzes Web applications,
focusing on interactions between Web components, using
source code annotations. In contrast, KONURE infers applica-
tions without analyzing, modifying, or requiring access to
source code. KONURE works for applications written in any
language and can infer both Web and non-Web applications
that interact with an external relational database.

DAVIS [53] visualizes the data-manipulation behavior of
an execution of a data-intensive program. DAViS detects
loops whose body contains only one query. DiscoTect [81]
summarizes the software architecture of a running object-
oriented system as a state machine. They both analyze pro-
gram behavior when processing certain user-specified inputs.
In contrast, KONURE actively explores the execution paths
of the program by solving for inputs and database contents
that enable it to infer the full application behavior.
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Database Reverse Engineering/Reengineering: Database
reverse engineering analyzes a program’s data access pat-
terns, often to reconstruct implicit assumptions of the data-
base schema [24, 27]. KONURE infers programs that interact
with databases (and not the structure of the database).
Database program reengineering often involves analyzing
the source code to produce more efficient database queries
[21, 25]. In contrast, KONURE (1) does not require dynamic
program instrumentation or static analysis, (2) does not re-
quire the program to be written in specific languages or
patterns, and (3) regenerates a new executable program (in-
stead of transforming database queries).
Input Generation for Discovering Defects: Concolic test-
ing [19, 37, 38, 63] generates inputs that systematically ex-
plore all execution paths in the program. The goal is to find
inputs that expose software defects. BuzzFuzz [35] generates
inputs that target defects that occur because of coding over-
sights at the boundary between application and library code.
DIODE [66] generates inputs that target integer overflow
errors. All of these techniques target programs written in
general-purpose languages such as C. Given the complexity
and generality of computations as expressed in this form,
completely exploring and characterizing application behav-
ior is infeasible in this context. Our approach, in contrast, (1)
works with applications whose behavior can be productively
modeled with programs in our DSL and (2) infers a model
that captures the complete functionality of the program.

6 Conclusion

Applications that read relational databases are pervasive in
modern computing environments. We present new active
learning techniques that automatically infer and regenerate
these applications. Key aspects of these techniques include
(1) the formulation of an inferrable DSL that supports the
range of computational patterns that these applications ex-
hibit and (2) the inference algorithm, which progressively
synthesizes inputs and database contents that productively
resolve uncertainty in the current working hypothesis. Re-
sults from our implementation highlight the ability of this
approach to infer and regenerate applications that access
relational databases.
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