
POSTER: Automatic Synthesis of Parallel Unix

Commands and Pipelines with KumQuat

Jiasi Shen
MIT
USA

jiasi@csail.mit.edu

Martin Rinard
MIT
USA

rinard@csail.mit.edu

Nikos Vasilakis
MIT
USA

nikos@vasilak.is

Abstract

We present KumQuat, a system for automatically generating
data-parallel implementations of Unix shell commands and
pipelines. The generated parallel versions split input streams,
execute multiple instantiations of the original pipeline com-
mands to process the splits in parallel, then combine the
resulting parallel outputs to produce the final output stream.
KumQuat automatically synthesizes the combine operators,
with a domain-specific combiner language acting as a strong
regularizer that promotes efficient inference of correct com-
biners. We present experimental results that show that these
combiners enable the effective parallelization of our bench-
mark scripts.

CCS Concepts: • Computing methodologies → Concur-
rent computing methodologies; • Software and its engineer-

ing→ Software development techniques.

Keywords: Automatic parallelization, program synthesis

1 Introduction

The Unix shell, working in tandem with the wide range
of commands it supports, provides a convenient program-
ming environment for many stream-processing computa-
tions. Shell commands—which can be written in multiple
languages—typically execute sequentially on a single pro-
cessor. This sequential execution often leaves available data
parallelism, in which a command operates on different parts
of an input stream in parallel, unexploited. This observation
has motivated the development of systems that exploit data
parallelism in shell pipelines [5, 10, 14]. A key prerequisite
is obtaining the combiners necessary for merging the result-
ing multiple parallel output streams correctly into a single
output. Previous systems rely on developers to manually
implement such combiners and associate them with their
corresponding shell commands [5, 10, 14].
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508400

(a) Serial pipeline that consists of two commands f1, f2

(b) Unoptimized parallel pipeline that executes a combiner after
each parallel command

(c) Optimized parallel pipeline that executes multiple commands in
parallel after eliminating intermediate combiners

Figure 1. KumQuat parallelizes a pipeline by splitting input
streams, running parallel copies of original commands on
the input substreams, and combining output substreams.

We present a new system, KumQuat, for automatically
exploiting data parallelism available in Unix pipelines. Work-
ing with the commands in the pipeline as black boxes, Kum-
Quat automatically generates inputs that explore the be-
havior of a command to infer and automatically generate a
combiner for it. This capability enables KumQuat to auto-
matically generate data-parallel versions of Unix pipelines,
including pipelines that contain new commands or command
options for which combiners were previously unavailable.

KumQuat targets commands that can be expressed as data-
parallel divide-and-conquer computations with two phases:1
the first phase executes the original, unmodified command
in parallel on disjoint parts of the input; the second phase
combines the partial results from the first phase to obtain the
final output. A domain-specific combiner language acts as a
strong regularizer that promotes efficient learning of correct
combiners. The resulting (automatically generated) parallel
computation executes directly in the same environment and
with the same program and data locations as the original
sequential command.

1There is no requirement that the actual internal implementation must
be structured as a divide-and-conquer computation—because KumQuat
interacts with the command as a black box, the requirement is instead only
that the computation that it implements can be expressed in this way.

431

https://doi.org/10.1145/3503221.3508400

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Jiasi Shen, Martin Rinard, and Nikos Vasilakis

2 Working Example

Consider a Unix shell pipeline that counts the frequency of
words in an input stream [2]:

cat $IN | tr -cs A-Za-z '\n' | tr A-Z a-z |

sort | uniq -c | sort -rn

The six commands in the pipeline (1) read the input stream,
(2) break the input stream into lines of words, (3) convert
words into lower case, (4) sort words, placing eachword on its
own line, (5) compare adjacent words, removing duplicates
and prepending each unique word with a count, and (6) sort
the words on their counts in reverse order.
KumQuat exploits the data parallelism available in each

command by splitting the input stream into substreams and
instantiating copies of each command to process the sub-
streams in parallel. These parallel computations produce a
set of parallel output substreams. A key question is how to
appropriately combine these output substreams into a single
final output stream of the command. KumQuat synthesizes
a combiner for each parallelizable command (Figures 1a,1b).
To focus synthesis on a productive space of candidate

combiners, KumQuat works with combiners expressible in a
domain-specific combiner language [11]. This DSL contains
operators that map another combiner across the components
of a stream, select among multiple streams, combine multi-
ple stream components into a single component, rerun the
command on the concatenated input streams, and combine
multiple streams into a single stream in a variety of ways.

KumQuat targets commands f with combiner д such that

f (x1 ++ x2) = д(f (x1), f (x2))

for all input streams x1, x2, where the streams are structured
as units separated by delimiters and terminate with newlines.
++ denotes string concatenation.

To synthesize these combiners, KumQuat repeatedly gen-
erates input streams x1 and x2, feeds them to the serial and
parallel versions of f instantiated with candidate combiners
д, and compares the resulting serial and parallel outputs to
discard candidate combiners д that do not satisfy the equa-
tion [11]. In our example this process quickly produces the
correct DSL combiners: (1) concat for “cat $IN”, (2) rerun
for “tr -cs A-Za-z ’\n’”, (3) concat for “tr A-Z a-z”,
(4) merge for “sort”, (5) (stitch2 ‘ ‘ add first) for “uniq -c”,
and (6) merge(’-rn’) for “sort -rn”. Note that the correct
combiner depends both on the command and its flags.
KumQuat then uses the synthesized combiners to par-

allelize the pipeline. By default, KumQuat splits the input
stream before each such command and applies the combiner
after the command (Figure 1b). In many cases, however,
it is possible to enhance parallel performance (exploiting
pipelined parallelism across consecutive commands) by elimi-
nating intermediate combiners so that the output substreams
for one command feed directly into the input substreams for
the direct parallel execution of the next command (Figure 1c).

3 Experimental Results

We evaluate KumQuat on 70 benchmark scripts, includ-
ing mass-transit analytics [13], natural language process-
ing [4, 8], classic Unix one-liners [1, 2, 6, 9, 12], and Unix50
scripts [3, 7]. The benchmarks contain 133 unique com-
mand/flag combinations (referred to as “commands” below),
where 121 process data and read an input stream.

KumQuat synthesizes a combiner for 113 of the 121 unique
commands. No combiners are synthesized for the remaining
8, where 7 have no correct combiners. Using the synthesized
combiners, KumQuat parallelizes 325 of the 427 pipeline
stages (76.1%) in the benchmarks and eliminates 144 (44.3%)
during optimization. The resulting parallel scripts produce
the same outputs as original. Among the scripts whose serial
execution time is at least 3 minutes, the unoptimized parallel
speedup ranges between 3.5–14.9× (median 8.5×) and the op-
timized parallel speedup ranges between 3.8–26.9× (median
11.3×). These results highlight KumQuat’s ability to exploit
the data parallelism implicitly present in the benchmarks.

Acknowledgments. This research was funded by DARPA
(HR001120C0191, N6600120C4025, and HR00112020013).

References

[1] Jon Bentley. 1985. Programming Pearls: A Spelling Checker. Commun.
ACM 28, 5 (May 1985), 456–462. https://doi.org/10.1145/3532.315102

[2] Jon Bentley, Don Knuth, and Doug McIlroy. 1986. Programming Pearls:
A Literate Program. Commun. ACM 29, 6 (June 1986), 471–483.

[3] Pawan Bhandari. 2020. Solutions to unixgame.io. https://git.io/Jf2dn
[4] Kenneth Ward Church. 1994. Unix™for poets. Notes of a course from

the European Summer School on Language and Speech Communication,
Corpus Based Methods (1994).

[5] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin C.
Rinard. 2021. An Order-Aware Dataflow Model for Parallel Unix
Pipelines. Proc. ACM Program. Lang. 5, ICFP, Article 65, 28 pages.

[6] Dan Jurafsky. 2017. Unix for Poets. https://web.stanford.edu/class/
cs124/lec/124-2018-UnixForPoets.pdf

[7] Nokia Bell Labs. 2019. The Unix Game—Solve puzzles using Unix pipes.
https://unixgame.io/unix50

[8] Christopher Manning. 2016. Unix for Poets (in 2016).
https://web.stanford.edu/class/archive/linguist/linguist278/
linguist278.1172/notes/278-UnixForPoets.pdf

[9] Malcolm D McIlroy, Elliot N Pinson, and Berkley A Tague. 1978. UNIX
Time-Sharing System: Foreword. Bell System Technical Journal 57, 6
(1978), 1899–1904.

[10] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia.
2020. POSH: A Data-Aware Shell. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 617–631.

[11] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. 2021. Automatic Syn-
thesis of Parallel Unix Commands and Pipelines with KumQuat. CoRR
abs/2012.15443 (2021). https://arxiv.org/abs/2012.15443

[12] Dave Taylor. 2004. Wicked Cool Shell Scripts: 101 Scripts for Linux, Mac
OS X, and Unix Systems. No Starch Press.

[13] Eleftheria Tsaliki and Diomidis Spinellis. 2021. The real statistics
of buses in Athens. https://insidestory.gr/article/noymera-leoforeia-
athinas?token=0MFVISB8N6.

[14] Nikos Vasilakis, Konstantinos Kallas, KonstantinosMamouras, Achilles
Benetopoulos, and Lazar Cvetković. 2021. PaSh: Light-Touch Data-
Parallel Shell Processing. In Proceedings of the Sixteenth European
Conference on Computer Systems. 49–66.

432

https://doi.org/10.1145/3532.315102
https://git.io/Jf2dn
https://web.stanford.edu/class/cs124/lec/124-2018-UnixForPoets.pdf
https://web.stanford.edu/class/cs124/lec/124-2018-UnixForPoets.pdf
https://unixgame.io/unix50
https://web.stanford.edu/class/archive/linguist/linguist278/linguist278.1172/notes/278-UnixForPoets.pdf
https://web.stanford.edu/class/archive/linguist/linguist278/linguist278.1172/notes/278-UnixForPoets.pdf
https://arxiv.org/abs/2012.15443
https://insidestory.gr/article/noymera-leoforeia-athinas?token=0MFVISB8N6
https://insidestory.gr/article/noymera-leoforeia-athinas?token=0MFVISB8N6

	Abstract
	1 Introduction
	2 Working Example
	3 Experimental Results
	References

