12 United States Patent

Shen et al.

US011483353B1

US 11,483,353 B1
Oct. 25, 2022

(10) Patent No.:
45) Date of Patent:

(54) GENERATING ACCESS MANAGEMENT
POLICIES FROM EXAMPLE REQUESTS

(71) Applicant: Amazon Technologies, Inc., Secattle,
WA (US)
(72) Inventors: Jiasi Shen, Cambridge, MA (US);
Homer Strong, Seattle, WA (US);
Daniel George Peebles, Richland, WA
(US); Neha Rungta, San Jose, CA (US)
(73) Assignee: Amazon Technologies, Inc., Secattle,
WA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 17/112,849
(22) Filed: Dec. 4, 2020
(51) Int. CL
GO6F 15/173 (2006.01)
HO4L 9/40 (2022.01)
(52) U.S. CL
CPC HO4L 63720 (2013.01); HO4L 63/102
(2013.01); HO4L 63/105 (2013.01)
(58) Field of Classification Search
CPC HO4L 63/0263; HO4L 41/0806; HO4L
41/0893
USPC e, 709/223

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
9,544,294 B2 1/2017 Srimmivasan et al.
10,063,654 B2 82018 Kirti et al.
10,255,001 B2 4/2019 Lander et al.
10,469,314 B2 11/2019 Ennis, JIr. et al.
11,032,287 B1* 6/2021 Wang HO4L 63/102
2020/0120102 Al 4/2020 Cybulski et al.
2021/0410051 Al1* 12/2021 Bouchet HO04W 88/08

* cited by examiner

Primary Examiner — Wing F Chan
Assistant Examiner — Andrew Woo

(74) Attorney, Agent, or Firm — S. Scott Foster; Kowert,
Hood, Munyon, Rankin & Goetzel, P.C.

(57) ABSTRACT

Access management policies may be generated from
example requests. An access management policy may be
received. One or more example requests that have expected
results when evaluated with respect to the access manage-
ment policy may be received. Updates to the access man-
agement policy may be determined that cause the expected
results to occur when a new version of the access manage-
ment policy based on the updates 1s enforced. The new
version ol the access management policy may be generated
based on the updates.

20 Claims, 9 Drawing Sheets

Yy

Receive, by an identity and access management
system, an access management policy and example
request(s) to be evaluated according to the idenfity
and access management policy with respective
expected resufts for the example request(s)

610

Y

Determine update(s) to the access management
policy that cause the expected results for the example
request(s) to occur when a new version of the identity

and access management policy based on the
update(s) is enforced
620

Y

Generate the new version of the access management
nolicy based on the update(s)
630

Provide the new version of the access management

policy
640

US 11,483,353 B1

Sheet 1 of 9

Oct. 25, 2022

U.S. Patent

Gl Gl
uoneinbijuoo uoneinbiuoo
pajusp pamoje
polIpow polIpow

0C [Adljod Jusiusbeuell $$820e Mau

L Ol

0L}
Jojeisuab Aaijod

0F[(S)isenbai anijebau

0€[(s)1senbai sanisod

24 ek
uoneinbiuod uonenbijuoo

paiuap pemoje

07 L Adljod Jusiuebeuell $S8aoe

U.S. Patent Oct. 25, 2022 Sheet 2 of 9 US 11,483,353 B1

{ \
| : other services (e.q., compute, data storage, etc.)250 |
| accoun |
| resource(s) |
| = |
| |
| |
| |
: policy editor :
| 234 s
identity and access |
| policy enforcement management store |
| 220 214 ’
| Il policy generator |
| 232 accpt:mt |
| policies |
| 219 |
| policy management 230 o [
! - I
: interface 212 |
|
: identity and access management service 210 :
| provider network 200 |
e - —— — — — — —— W— — - — — G — - — — o — — ——— — — — w’

network
260

client(s)

270

FIG. 2

US 11,483,353 B1

Sheet 3 of 9

Oct. 25, 2022

U.S. Patent

0G¢
Aarjod Justusbeuei
$$820L MOU

00¢

07¢
UOISJONLOD

(o)
JUBWINIOP

Jdojesaush Adjjod

& Ol

0¢¢
uonedlduIs

Aoyod

0
uoneodioou

1s8nba.
ojdiuexs

0I¢
UOISIOALIOD

uuoj yyed

00¢ uoisioaid uoneaiidus

COT Sojduwiexa aanebau

F0C Ssojdiiexs aalisod

enc Aoijod

20¢ Adijod Juswsbeuelu
$S800L MaU s)elausb

US 11,483,353 B1

Sheet 4 of 9

Oct. 25, 2022

U.S. Patent

0¥
Aaonod
Justsbeuew
$$6008 MauU

Hpp U010aLI0D

447
101jU09 Adijod

097

LOISIBAUOD |

(o)
JUBLINIOP

05y
uoneaynduwis
Adjod

007 J0jeeush Aoijod

0rv
08D

J0IU0D
Adjjod

v Ol

0
IX83U09
Adijod
PaYOAUI

087

(S81)a110d JUN0JJE

4

luonesodioou

Jsonbai
ojduexe

CEY
(Sar)aijod
09)e100sse jab

0Ly
LOISIBAUOD |
Loy yjed

90 %9840 JOIjjuod
GO Sejdexe aalebau
(707 sajdwexa anysod

¢ 0 Adijod Justuebeueiu
$$8008 Mol sjeloush

US 11,483,353 B1

Sheet 5 of 9

Oct. 25, 2022

U.S. Patent

G Old

g¢ccC Aajod ejeroush HEC %0819 Joljju0d Aojjod D ZSC U0Isia.d uoneaynauls u

v dol- S il s et e e wim e e fan e e e e e ik b e sl il e el e e e e i Bl i e e e et e e et e e e e

ﬁ

ﬁl—.l'!'.l':I.Ir;II‘II-'ll.rl__l*l'[l':.‘.['l“l!l:'*l"l"!l‘l“

{

i‘t.!i.’.‘Iil:‘l“!'*‘I‘t."tt‘ttl_i_!!i*‘“i:’l.!:’l.l:'l.‘I!“‘I_ttl“'_i

ﬂuﬂﬁu..uuuuuq-nﬂununi-nu’_
EETESSSAESSE SR ESw e vt

l asanbsa } asenbax

WFEEFEFTEFTEFERTETE T TS Ew -'-’!'

¥
]
¥
x
4
¥
]
*
¥
¥
*
¥
E
¥
¥
¥
¥
¥
E]
¥
:
E]
¥
*
¥
¥

.
.

lll

} ApTT1od buTaoTTIUCT

AL O T P N U T P A
s et e ol i sl i ik e i i Vel ek i e e
.-..-- L L --:-I
W W W W el
.#I-iMH iy i iy iy i i i il ki e e il e . lIHlAI
W W WA el

] JUSWR3R1G

EReE=lViClaRcla ke } AUBWR]3RAS

.----.:..-'..-'..-'.l-'--"------------..'---'------.‘.-'--'--'--'--'k

.‘-"'--"'-'---‘.--‘.-‘-‘--‘---------‘"
.--.-..l..-.-..-.--.--.---—-.--.---d
Pl e i ki e . . P - A iy o i s e e el e s iy
ﬂ-ﬂ--ﬂﬂﬂﬂ‘ﬂﬂﬂi.-..ﬂi-.ﬂﬂ-.ﬂ.‘l.-.-ﬂﬂ-ﬂ.‘

FREEAEASNTANEASNTASTAAAASTNATNASEASTRATFRESFYBEEETESEER TFETETrEFTR R TRTETTSTRErs sy ¥ BB FEEmEFEEEENFEENE RSN NS - - S W A A AW N S WSSO WS S W S N S S S ON S S S-S RS NN RSN N NN S SN N S S-S N S - - - -y

{

L L L L B L 0 B L 4 1 1 0 3 @ 0 3 & 1 2 2 1 2 01 1 2 J % 2 2. ' £ 1.1 ;31 313 3.2 0 7 3 0. 3.1 & 7 ;2 0 7 % 3 7 : 3 ¥ ;. 7 3|

ﬁ

} QuRuWe3rlg

1 QUSRS ! QUSue1BAg

o B B B B B B T B B B B B Y B B B B B B .

L2 1 L L L L & & B § & L . J .'-'.-..----‘-’--"‘I
---------------------‘----'---‘
-'.-‘..-‘---‘-.-‘--'-----‘---“---‘-.-'
L& L F 1 b B G+ § B 8 | : § |} ;P | -...l.-.-----‘

III - B T I O A A A

FHC oAneuiaje Aaljod pejeisus 2pC Adijod pejersus 226 Aoijod ndu

07G MBIA JInse. 7C Jndus jojeioush

1C a0eLig)uI Jojelsusb Adiod

U.S. Patent Oct. 25, 2022 Sheet 6 of 9 US 11,483,353 B1

Receive, by an identity and access management
system, an access management policy and example
request(s) to be evaluated according to the identity
and access management policy with respective

expected results for the example request(s)
610

Determine update(s) to the access management
policy that cause the expected results for the example
request(s) to occur when a new version of the identity

and access management policy based on the

update(s) is enforced
620

Generate the new version of the access management
policy based on the update(s)
630

Provide the new version of the access management

policy
640

FIG. 6

U.S. Patent Oct. 25, 2022 Sheet 7 of 9 US 11,483,353 B1

Convert an access management policy into path form
710

Add Allow statement(s) and/or modify an
existing Deny statement(s) to a new version of
an access management policy for received
example request(s) with a positive result in
path form
/30

Add Deny statement(s) to a new version of an
access management policy for received
example request(s) with a negative result in
path form
720

[dentify simplification(s) to perform for the new version of the
access management policy from the path form of the access

management policy
/740

Perform simplification(s) on the path form of the new version of
the access management policy according to a simplification
precision parameter
/50

Convert the simplified new version of the access management

policy into a document form
760

FIG. 7

U.S. Patent Oct. 25, 2022 Sheet 8 of 9 US 11,483,353 B1

Receive a first access management policy and
example request(s) to be evaluated according to the
first access management policy with respective

expected results for the example request(s)
810

[dentify a second access management policy that
would be invoked to evaluate the example request(s)

in addition to the first access management policy
820

Determine a conflict between the respective expected
results for the example request(s) and the second
access management policy

830

Provide an indication of the conflict between the
respective expected results for the example requests

and the second access management policy
840

FIG. 8

U.S. Patent Oct. 25, 2022 Sheet 9 of 9 US 11,483,353 B1

computer system 1000

Drocessor processor

processor
1010a 10106

1010n

I/O interface
1030

memory 1020 network . .
et input/output device(s)

program 1040 1050
instructions data

(e.q., policy storage
generator) 1035
1029

CUrsor
control | | keyboard | | display(s)
device 1070
1060
wired and/or
wireless hetwork
conhection

FIG. 9

US 11,483,353 Bl

1

GENERATING ACCESS MANAGEMENT
POLICIES FROM EXAMPLE REQUESTS

BACKGROUND

A cloud provider, or other provider network, may imple-
ment multiple network-based services. These services may
provide different functionality, such as computational
resources, storage resources, data transmission, among vari-
ous others. Access controls to coordinate the identity and
privileges of diflerent users to obtain, use or otherwise
manage resources from the network-based services may be
implemented to secure the use of managed resources for
authorized users.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a logical block diagram of generating
access management policies from example requests, accord-
ing to some embodiments.

FIG. 2 1s a logical block diagram illustrating a provider
network implementing an i1dentity and access control man-
agement service that implements policy generation using
example requests, according to some embodiments.

FIG. 3 1s a logical block diagram illustrating an example
policy generator that generates a new access management
policy from example requests, according to some embodi-
ments.

FIG. 4 1s a logical block diagram 1llustrating an example
policy generator that detects contlicts between a generated
access management policy and invoked access management
policy, according to some embodiments.

FIG. 5§ illustrates an example user interface for a policy

generator, according to some embodiments.

FIG. 6 1s a high-level flowchart 1llustrating various meth-
ods and techniques to implement generating access man-
agement policies from example requests, according to some
embodiments.

FI1G. 7 1s a high-level flowchart 1llustrating various meth-
ods and techniques to implement determining updates that
would cause results from example requests 1n a generated
access management policy, according to some embodi-
ments.

FIG. 8 1s a high-level flowchart 1llustrating various meth-
ods and techniques to implement detecting contlicts between
a generated access management policy and imnvoked access
management policy, according to some embodiments.

FI1G. 9 1llustrates an example system configured to imple-
ment the wvarious methods, techmiques, and systems
described herein, according to some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Stmilarly, the words

“include,” “including,” and “includes™ mean including, but
not limited to.

10

15

20

25

30

35

40

45

50

55

60

65

2

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-

ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first contact could be termed a
second contact, and, similarly, a second contact could be
termed a first contact, without departing from the scope of
the present mvention. The first contact and the second
contact are both contacts, but they are not the same contact.

DETAILED DESCRIPTION OF EMBODIMENTS

Various techniques for generating access management
policies from example requests are described herein. Iden-
tity and access management systems may support various
features to control access to resources hosted i1n other
network-based services. Access management policies, for
example, may specily various actions and eflects with
respect to resources i different network-based services in
order to provide fine-grained access control, in various
embodiments. Access management policies may be speci-
fied 1 various ways, in human-readable formats, such as
JavaScript Object Notation or other system-specific policy
languages (e.g., as supported by identity and access man-
agement service 210 1n FIG. 2). As access to the number of
resources and services managed through the use of access
management policies increases, the complexity of creating
new or edit policies to account for additional scenarios
becomes more challenging.

For example, 1f certain type of application request for a
resource were to fail because an access management policy
was enforced that did not allow the request, 1t may be
difficult for a user to determine how to modily the access
management policy to allow the request. Techniques for
generating access management policies from example
requests, however, may be implemented in various embodi-
ments that would take the example request as well as an
expected result (e.g., the request being allowed), and auto-
matically generate a new policy that when enforced would
allow the request. Such techniques may prevent time-con-
suming, complicated, and error-prone manual edits (e.g.,
leading to unintended failure scenarios as a result of intro-
duced errors). Moreover, automatic generation ol access
management policies may allow for policy simplification
and other optimization techniques be applied, which may
result 1 better understood and more eflective access man-
agement policies that are generated.

FIG. 1 illustrates a logical block diagram of generating
access management policies from example requests, accord-
ing to some embodiments. Policy generator 110 may be
implemented as part of an 1dentity and access management
(IAM) system (e.g., as discussed below with regard to FIG.
1) and/or as standalone application, which may be appli-
cable to policies for an identity and access management
system. As discussed in detail below with regard to FIGS.
2-5, policy generator 110 may implement various interfaces
(e.g., policy generator interface 5310 i1n FIG. §), which may
allow a user to provider or specily an existing access
management policy 120, which may include various allowed
actions 1n allowed configuration 122 as well as various
denied actions 1 demed configuration 124. As discussed
below, access management policy 120 may be specified in
various formats, including but not limited to, human-read-
able formats, such as Javascript Object Notation (JSON),
and/or domain-specific, service-specific or system-speciiic
policy languages, such as a policy language supported by
identity and access management service 210 in FIG. 2. In

US 11,483,353 Bl

3

some embodiments, access management policy 120 may be
an “‘empty” policy that has no existing content, which may
be generated based on the positive request(s) 130 and
negative request(s) 140.

Policy generator 110 may also receive positive request(s)
130. Positive request(s) 130 may be examples of requests
that specily one or more actions with respect to one or more
resources with an expected result of being allowed by the
new access management policy 150. Similarly, policy gen-
erator 110 may receive negative request(s) 140. Negative
request(s) may be examples of requests that specily one or
more actions with respect to one or more resources with an
expected result of being denied by the new access manage-
ment policy 150. Diflerent combinations of positive requests
130 and/or negative requests 140 may be used by policy
generator 110 to generate new access management policy
150, including scenarios with only positive requests 130 (or
a single positive request 130), only negative request(s) 140
(or a single negative request 140), and some combination of
the same or diflerent numbers of both positive 130 and
negative 140 requests.

Policy generator 110 may apply various techniques to
generate new access management policy 150 that includes a
modified allowed configuration 152 and/or modified denied
configuration 154, such as the techniques discussed below
with regard to FIGS. 3-4 and 6-8. In some embodiments,
policy generator 110 may detect conflicts with other access
management policies that are inform or are otherwise
invoked by example positive 130 and negative requests 140
in order to identify those scenarios where a modification to
another policy may have to be performed in order to achieve
a desired result for the example requests. Policy generator
110 may provide new access management policy 150 via
various types ol interfaces for display and/or further editing.

The previous description of a policy generator 1n FIG. 1
1s a logical illustration and thus 1s not to be construed as
limiting as to the architecture for implementing a policy
generator.

This specification begins with a general description of a
provider network that implements an 1dentity and access
management service that generates access management poli-
cies from example requests. Then various examples of the
identity and access management service including different
components/modules, or arrangements of components/mod-
ule that may be employed as part of implementing the
identity and access management service are discussed. A
number of different methods and techniques to implement
generating access management policies from example
requests are then discussed, some of which are illustrated in
accompanying ftlowcharts. Finally, a description of an
example computing system upon which the various compo-
nents, modules, systems, devices, and/or nodes may be
implemented 1s provided. Various examples are provided
throughout the specification.

FIG. 2 1s a logical block diagram illustrating a provider
network implementing an i1dentity and access control man-
agement service that implements policy generation using
example requests, according to some embodiments. In vari-
ous embodiments, a provider network 200 may be a private
or closed system or may be set up by an enftity such as a
company or a public sector organization to provide one or
more services (such as various types of cloud-based storage,
processing, or other computing resources) accessible via the
Internet and/or other networks to clients 270. The provider
network may be implemented 1n a single location or may
include numerous data centers hosting various resource
pools, such as collections of physical and/or virtualized

10

15

20

25

30

35

40

45

50

55

60

65

4

computer servers, storage devices, networking equipment
and the like (e.g., computing system 1000 described below
with regard to FIG. 9), needed to implement and distribute
the infrastructure and storage services oflered by the pro-
vider network.

For example, the provider network (which may, in some
implementations, be referred to as a “cloud provider net-
work™ or simply as a “cloud”) may refer to a pool of
network-accessible computing resources (such as compute,
storage, and networking resources, applications, and ser-
vices), which may be virtualized or bare-metal (e.g., pro-
viding direct access to underlying hardware without a vir-
tualization platform). In this way, the provider network can
provide convenient, on-demand network access to a shared
pool of configurable computing resources that can be pro-
grammatically provisioned and released in response to cus-
tomer commands. These resources can be dynamically pro-
visioned and reconfigured to adjust to varniable load.

The provider network can be formed as a number of
regions, such as provider network regions, where a region
may be a separate geographical area 1n which the provider
network clusters or manages data centers, 1n some embodi-
ments. Each region 200 may include two or more availabil-
ity zones (sometimes referred to as fault tolerant zones)
connected to one another via a private high speed network,
for example a fiber communication connection. An avail-
ability zone (also known as an availability domain, or simply
a “zone’”) refers to an 1solated failure domain including one
or more data center facilities with separate power, separate
networking, and separate cooling from those in another
availability zone. Preferably, availability zones within a
region are positioned far enough away from one another that
the same natural disaster should not take more than one
availability zone oflline at the same time. Clients 270 can
connect to availability zones of the provider network via a
publicly accessible network (e.g., the Internet, a cellular
communication network). Regions may be connected to a
global network which includes private networking infra-
structure (e.g., fiber connections controlled by the cloud
provider) connecting each region to at least one other region.
The provider network may deliver content from points of
presence outside of, but networked with, these regions 200
by way of edge locations and regional edge cache servers.
This compartmentalization and geographic distribution of
computing hardware enables the provider network to pro-
vide low-latency resource access to customers on a global
scale with a high degree of fault tolerance and stability.

In some embodiments, a provider network may i1mple-
ment various computing resources or services across one or
more regions, such as identity and management service 210
and other services 250, which may include a virtual compute
service, data processing service(s) (e.g., map reduce, data
flow, and/or other large scale data processing techmques),
data storage services (e.g., object storage services, block-
based storage services, database services, or data warechouse
storage services) and/or any other type of network-based
services (which may include various other types of storage,
processing, analysis, communication, event handling, visu-
alization, and security services not 1llustrated). The
resources used to support the operations of such services
(e.g., compute and storage resources) may be provisioned 1n
an account associated with the provider network, in contrast
to resources requested by users of the provider network 200,
which may be provisioned 1n user accounts, 1 some
embodiments.

In various embodiments, the components 1illustrated 1n
FIG. 2 may be implemented directly within computer hard-

US 11,483,353 Bl

S

ware, as nstructions directly or indirectly executable by
computer hardware (e.g., a microprocessor or computer
system), or using a combination of these techniques. For
example, the components of FIG. 2 may be implemented by
a system that includes a number of computing nodes (or
simply, nodes), each of which may be similar to the com-
puter system 1000 1llustrated 1n FIG. 9 and described below.
In various embodiments, the functionality of a given system
or service component (e.g., a component of i1dentity and
access management services 210 or other services 250) may
be implemented by a particular node or may be distributed
across several nodes. In some embodiments, a given node
may implement the functionality of more than one service
system component (e.g., more than one data store compo-
nent).

Identity and access management service 210 may policy
generation techniques, as discussed above with regard to
FIG. 1 and below with regard to FIGS. 3-8. Identity and
access management service 210 may provide operators of
other services 250 with the ability to enforce access controls
for various types of users and various roles of users asso-
ciated with an account according to the 1dentity determined
for and shared by identity and access management service
210. For example, 1dentity and access management service
210 can provide fine-grained access controls to different
service resources, support different authentication tech-
niques or protocols, such as multi-factor authentication
(MFA), support analysis or tools for specilying access
controls, and integration features for external or alternative
identity and access control mechanisms, 1n some embodi-
ments. User controls may be mmplemented to determine
what, wherein, and when users can access resources and
how the resources may be used by users, including federated
users to provide management for groups ol users and/or
roles which may support features like single sign-on (SSO),
in some embodiments.

Identity and access management service 210 may imple-
ment interface 212. Interface 212 may be a programmatic
interface (e.g., supporting one or more APIs), graphical (e.g.,
providing a web-based console or other graphical control),
and/or command line interfaces, in various embodiments, to
allow for the specification and management of various
identity and access management service 210 features,
including creating, editing, and generating access manage-
ment policies as discussed below with regard to FIGS. 3-5
for performing access operations.

Identity and access management service 210 may imple-
ment policy enforcement 220, in various embodiments. For
example, various access control management policies may
be specified and enforced for diflerent account resource(s)
252 1n other services 250. Policy enforcement 220 may serve
as an authorization and access control for various requests,
operations, or other actions taken with respect to account
resources by various users, accounts, roles, and/or other
identities by enforcing access management policies accord-
ing to the various features specified in the access manage-
ment policies. For example, policy enforcement 220 may
interpret these policies, determine whether and what
resources and actions are within the scope of a policy and
provide access control information to other services 1n order
for other services to allow or deny requests directed to
account resource(s) 252. Identity and access management
store 214 may store the created and enforced account
policies 215, 1n various embodiments.

In various embodiments, policy management 230 may
implement policy editor 234. As discussed 1n detail below
with regard to FIGS. 3-5, various interfaces and/or interac-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions may be used to allow users to create, edit, and/or
remove access management policies. In this way, users can
take advantage of the flexible and customizable features of
access control policies to tailor access control management
for specific scenarios 1n an account. Policy editor 234 may,
in some embodiments, invoke policy generator 232, 1n order
to generate or provide a policy to policy editor 234.

Because errors 1n policies can lead to unintended conse-
quences when enforced (e.g., being overly permissive or
restrictive upon operations), policy management 230 may
implement policy evaluator 232, 1n some embodiments. In
this way, policy evaluator 232 can provide a user with
teedback to correct, modily, or optimize that would other-
wise lead to undesirable outcomes when a given access
management policy was enforced. FIG. 5 provides a detailed
discussion of policy evaluation including the use of resource
state information to provide context-sensitive and dynamic
cvaluation of policies that adapts and optimizes policy
evaluation different across different accounts.

Generally speaking, clients 270 may encompass any type
of client configurable to submit network-based requests to
provider network regions 200 via network 260, including
requests for other services 250 (e.g., a request to create a
database, start a computation job, setup a data stream, etc.).
In some embodiments, operators of a service (e.g., service
250) may be a client 270 that performs requests to specity
quorum controls and/or access control operations, 1n some
embodiments. For example, a given client 270 may include
a suitable version of a web browser, or may include a plug-in
module or other type of code module configured to access a
management console to specily quorum controls and/or
access control operations. In some embodiments, such an
application may include sutlicient protocol support (e.g., for
a suitable version of Hypertext Transier Protocol (HTTP))
for generating and processing network-based services
requests without necessarily implementing full browser sup-
port for all types of network-based data. That 1s, client 270
may be an application configured to interact directly with
provider network region 200. In some embodiments, client
270 may be configured to generate network-based services
requests according to a Representational State Transier
(REST)-style network-based services architecture, a docu-
ment- or message-based network-based services architec-
ture, or another suitable network-based services architec-
ture. Although clients 270 are illustrated as external to
provider network 200, in some embodiments clients of
different services, like other services 250, can be imple-
mented within provider network region 200 (e.g., imple-
mented on a resource of another service 250, such as virtual
compute instance).

Clients 270 may convey network-based services requests
to and receive responses from provider network regions 200
via network 260. In various embodiments, network 260 may
encompass any suitable combination of networking hard-
ware and protocols necessary to establish network-based-
based communications between clients 270 and provider
network regions 200. For example, network 260 may gen-
crally encompass the various telecommunications networks
and service providers that collectively implement the Inter-
net. Network 260 may also include private networks such as
local area networks (LANs) or wide area networks (WANSs)
as well as public or private wireless networks. For example,
both a given client 270 and provider network region 200
may be respectively provisioned within enterprises having
their own internal networks. In such an embodiment, net-
work 260 may include the hardware (e.g., modems, routers,
switches, load balancers, proxy servers, etc.) and software

US 11,483,353 Bl

7

(e.g., protocol stacks, accounting sottware, firewall/security
soltware, etc.) necessary to establish a networking link
between given client 270 and the Internet as well as between
the Internet and provider network region 200. It 1s noted that
in some embodiments, clients may communicate with pro-
vider network region 200 using a private network rather than
the public Internet.

FIG. 3 1s a logical block diagram illustrating an example
policy generator that generates a new access management
policy from example requests, according to some embodi-
ments. Policy generator 300 may be implemented as part of
identity and access management service 210, as discussed
above 1 FIG. 2 or as a standalone application, 1in some
embodiments. Policy generator 300 may receive, via an
interface, a request to generate a new access management
policy 302 that may include a policy 303 (or an i1dentifier to
lookup or obtain the policy), zero, one, or multiple positive
examples 304, zero, one, or multiple negative examples 305,
and, 1n some embodiments, a stmplification precision indi-
cator, as discussed below.

In various embodiments, policies may include various
features included 1n one or more statements, such as action
(e.g., service actions allowed or denied by a policy), eflect
(c.g., allows or denies actions), resource (e.g., resource
identifier, name or other information which the policy 1s
attached), principal (e.g., an account, user, role, or other
mechanism for making access decisions to allow or deny,
among others (e.g., policy language version, conditions,
identifiers for statements, etc.). These features of a policy
can be specified and then evaluated according to the various
techniques discussed below.

In various embodiments, path form conversion 310 may
generate an access management policy into disjoint paths, as
discussed in detail below with regard to FIGS. 6-7. In
various embodiments, policy generator 300 may implement
example request incorporation 320, 1n various embodiments.
Example request incorporation 320 may for each positive
request, add a new Allow statement and/or shrink an existing,
Deny statement in the policy 302 as needed. For each
negative request, example request incorporation 320 may
add a new Deny statement 1n the policy as needed.

In various embodiments, policy simplification 330 may
identily possible simplifications by merging paths in the
generated policy. In some embodiments, policy simplifica-
tion 330 may then prune or remove various features accord-
ing to the simplification parameter, as discussed below with
regard to FIG. 7. For example, policy simplification may
remove leatures without changing permissions or may
remove features, providing a more permissive policy (that
still satisfies the expected results of the example requests)
and return warning information that identifies how permis-
sions have changed. Policy generator 300 may implement
document form conversion 340 to transform the simplified
version of the policy from path form into a document form
(e.g., a text format in the policy language), which may then
be provided as the new access management policy 350.

As noted above, 1n some embodiments, conflicts can arise
between a policy being generated and other policies which
may have an eflect on requests evaluated using the generated
policy, such as the provided example requests. FIG. 4 15 a
logical block diagram illustrating an example policy gen-
crator that detects conflicts between a generated access
management policy and invoked access management policy,
according to some embodiments. Similar to FIG. 3, policy
generator 400 may be implemented as part of access man-
agement policy service 210, mm some embodiments, or
separately. Policy generator 400 may receive, via an inter-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

face, a request to generate a new access management policy
402 that may include a policy 403 (or an 1dentifier to lookup
or obtamn the policy), zero, one, or multiple positive
examples 404, zero, one, or multiple negative examples 405,
and a parameter to perform a contlict check, as indicated at
406.

In various embodiments, path form conversion 410 may
generate an access management policy into disjoint paths, as
discussed in detail below with regard to FIGS. 6-7. In
various embodiments, policy generator 400 may implement
example request incorporation 420. Example request incor-
poration 420 may for each positive request, add a new Allow
statement and/or shrink an existing Deny statement in the
policy 402 as needed. For each negative request, example
request incorporation 420 may add a new Deny statement in
the policy as needed.

In various embodiments, policy generator 400 may imple-
ment imnvoked policy context 430, 1n some embodiments. For
example, 1nvoked policy context 430 may get 432 account
polic(ies) 480 based on the request to identily any other
policies applicable to the example requests. For example,
service-wide or resource policies may be applicable depend-
ing on the resource being targeted 1n the request or account-
wide policies may be identified according to an identity of
the user 1n the request. Invoked policy context may then add
turther paths to the converted new policy to be considered
together by policy contlict check 440.

Policy conflict check 440 may compare the added paths
for invoked or otherwise applicable policies to the paths
generated for the new policy to check for blocks. Block
paths may, for instance, illustrate when an action with
respect to a resource cannot have the expect result because
of a countervailing path from the mvoked policy context.
Policy contlict check 440 may send an indication of a policy
conflict 442, 1n some embodiments. In some embodiments,
a correction 444 to the contlicting policy may be suggested.

For policies that do not have a contlict, policy generator
400 may proceed with other features. For example, policy
simplification 450 may identify possible simplifications by
merging paths in the generated policy. In some embodi-
ments, policy simplification 450 may then prune or remove
various features according to the simplification parameter, as
discussed below with regard to FIG. 7. For example, policy
simplification may remove features without changing per-
missions or may remove features, providing a more permis-
sive policy (that still satisfies the expected results of the
example requests) and return warning information that 1den-
tifies how permissions have changed. Policy generator 400
may implement document form conversion 460 to transform
the simplified version of the policy from path form into a
document form (e.g., a text format 1n the policy language),
which may then be provided as the new access management
policy 470.

FIG. 5 illustrates an example user interface for a policy
generator, according to some embodiments. Policy generator
interface 310 may provide a graphical interface policy
generators 300 and/or 400, 1n some embodiments. For
example, generator mput 520 may provide an iput policy
522 clement, which may allow user to enter a policy text or
upload, link to a policy. Generator input may include input
clements to specily positive requests 524 and negative
requests 526. Various other generator parameters, such as
simplification precision 332 and whether to perform a policy
conflict check 534 may be provided using various use
interface elements (e.g., drop down menus).

After selecting the input to generate the policy 536,
various results may be displayed in result view 340. For

US 11,483,353 Bl

9

example, one or multiple generated policies, 542 and 544
may be displayed (e.g., according to simplified and non-
simplified versions). As indicated at 5346 conflict(s) may be
displayed as well as policy warnings 548 which may 1llus-
trate a change 1n policy scope.

In at least some embodiments, display or providing of
different generated policies may be occur interactively based
on one or more requests. For example, an imtial policy
generation request may specily a low (or no) simplification.
Then, a second request may cause the generation and display
of a simplified version of the new policy. Then a third
request may cause the generation and display of a simplified
version of the new policy with a high precision parameter.
In this way, a user could move between displays of multiple
versions of a policy 1n order to see the effect of different
selected options (e.g., different simplification parameters),
in some embodiments.

Although FIGS. 2-5 have been described and illustrated 1n
the context of an i1dentily and access management service,
the wvarious techniques and components illustrated and
described 1n FIGS. 2-5 may be easily applied to other access
control systems in different embodiments for one or multiple
different systems or services, which may be public or
private. As such, FIGS. 2-5 are not intended to be limiting
as to other embodiments of a system that may implement
resource state evaluation of access management policies.

Various different systems and devices may implement the
vartous methods and techniques described below, either
singly or working together. For example, an identity and
access management service such as described above with
regard to FIGS. 2-4 may be configured to implement the
various methods. Therefore, the above examples and or any
other systems or devices referenced as performing the
illustrated method, are not intended to be limiting as to other
different components, modules, systems, or configurations
of systems and devices.

FIG. 6 1s a high-level flowchart 1llustrating various meth-
ods and techniques to implement resource state evaluation of
access management policies, according to some embodi-
ments. As indicated at 610, an access management policy
and example request(s) to be evaluated according to the
access management policy with respective expected results
for the example requests may be received, in various
embodiments. For example, a current access management
policy “P” as well as list of one or more positive requests
“Rp” and a list of one or more negative requests “Rn” may
be received.

As 1ndicated at 620, update(s) to the access management
policy that cause the expected results for the example
requests to occur when a new version of the access man-
agement policy based on the updates 1s enforced may be
determined, 1n various embodiments. For example, the new
version of the policy may differ from the old policy by
allowing the positive requests and denying the negative
requests. When a request 1s both positive and negative, 1t
will be denied by the new policy. Thus, 1n some embodi-
ments, the new policy P' may satisty:

{requests allowed by P'}=({requests allowed by P}U
Rp)\Rn.

In some embodiments, updates may also simplily an
initially generated policy using the example requests accord-
ing to a simplification parameter, as discussed 1n detail
below with regard to FIG. 7. For example, an “equivalent™
simplification parameter may automatically simplily an 1ni-
tially generated policy by removing redundant features
without changing the generated policy’s permissions. In
some embodiments, an “aggressive” simplification param-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

cter may simplily the mitially generated policy to be shorter
and more permissive than the mitially generated policy (but
still providing the explicitly request positive and negative
request results). Warning information may be provided to
indicate how the simplified policy has become more per-
missive, 1n some embodiments.

As i1ndicated at 630, the new version of the access
management policy may be generated based on the deter-
mined updates, in various embodiments. For example, the
identified updates along with various simplifications or other
optimizations may be combined to recreate a new policy
document 1n the policy language, in some embodiments. As
indicated at 640, the new version of the policy may be
provided, in some embodiments. For example, various inter-
faces, programmatic, graphical, and/or textual (e.g., com-
mand line), may display the new version of the access
management policy.

In various embodiments, including the policy generation
techniques discussed above and below, some rules, assump-
tions, and/or other criteria for a policy language that defines
an access management policy may be used or relied upon. In
some embodiments, the policy language may specity that
cach action/resource literal may contain at most one wild-
card character at the end, and that there are no conditions 1n
policies. For example, let ACTION be the set of action
literals. Let RESOURCE be the set of resource literals.

For handling wildcards (e.g. “*”’) in a policy language, 1n
various embodiments 1t may be the case that

ACTION:=(*a’l . .. [1°2)+(**")?

RESOURCE: =(*a’| . .. ['Z7I°0°] . . . [*9°1*/)+(**")?
These actions and resources may be case-insensitive. An
action may be 1n, 1n some embodiments, alphabetic charac-
ters, followed by an optional wildcard. A resource may be,
in some embodiments, alphanumeric characters and the
slash character, followed by an optional wildcard.

To relax this assumption 1n some policy generation tech-
niques, a set of literals L. with a subtraction operator SUB
may be found such that, for any literals 11, 12€L:

SUB(11,12) 1s a finite subset of L,

{sls matches 1 for some 1eSUB(11,12) }={s|s matches 11 } -
Isls matches 12}. Then, use L to replace the definition
for ACTION or RESOURCE.

In various embodiments, example requests may have the

following abstract grammar:
REQUEST:=ACTION RESOURCE (KEY VALUE)*

A request R=<a, r, [<kl, vl>, ..., <kl, v1>]>eREQUEST
may consist of an action aeACTION, a resource
reRESOURCE, and a list of key-value pairs.

If a wildcard 1s present 1n an example positive/negative
requests, these requests may be first pre-processed by rewrit-
ing them until literals are disjoint, similar to the pre-
processing of policies discussed below.

In various embodiments, policies may have the following
abstract grammar:

POLICY:=STMT*

STMT:=EFFECT
TION*
EFFECT:=*Allow’ ‘Deny’

CONDITION:=0OP KEY VALUE+
A policy PePOLICY may consist of a list of statements.

In various embodiments, a statement S=<e, [al, . . ., an],
[r1, ..., rm], [<ol,kl,vl>, ..., <ol,kl, vl1>]>eSTMT may
consist of an effect eeEFFECT, a list of actions [al, . .., an],
a list of resources [rl, . . . rm], and a list of conditions [<o1,
kl, vl>, ..., <ol, kl, vl>]. An eflect may be either allow
or deny. A condition may consist of an operator, a key, and
some values.

ACTION+RESOURCE+CONDI-

US 11,483,353 Bl

11

In various embodiments, semantics may be request R=<a,
r, [<kl, vl> . . ., <kl, v1>]eREQUEST matches a
statement S=<e, [al, . .., an], [r]l, ..., rm], [<ol, kI,
vl™>, ..., <ol, kl, vI™>]>eSTMT 1f the following hold:

There exists mteger 1 (1<=1<=n) such that a matches ax,

There exists iteger 1 (1<=1<=m) such that r matches ri,
and

For all integer 1 (1<=1<=1), the check of v1 v1' evaluates
to true.

A request ReREQUEST may be allowed by a policy
PePOLICY 1f the following hold:

R matches at least one allow statement 1n P,

R does not match any deny statement 1n P.

To work with conditions, 1n various embodiments, actions
and resources may be treated as two fields. Treat each
condition as an additional field that may also be conjuncted
together. In such a scenario, a path may contain not only the
action and resource fields but also all of the relevant con-
dition fields. In this way, conditions may be included 1n the
paths.

In view of the above considerations, technmiques for gen-
erating a new version of a policy based on example requests
may be performed. FIG. 7 1s a high-level flowchart illus-
trating various methods and techniques to implement deter-
miming updates that would cause results from example
requests 1n a generated access management policy, accord-
ing to some embodiments. As indicated at 710, an access
management policy may be converted into path form, in
some embodiments. For example, a policy generator may:

a) Collect the set of distinct actions/resources in the
policy. Rewrite until disjoint, using the SUB operator

b) Imitialize an empty set of paths

¢) For each statement <Allow, [al, ... ,an], [r],...,rm]>
in P, for all integers 1, j such that 1<=1<=n and
1<=j<=m, add path <ai, 11> to the set

d) For each statement <Deny, [al, ..., an], [r]1,...,rm]>
in P, for all integers 1, j such that 1<=1<=n and
1<=j<=m, remove path <ai, 17> from the set if exist.

As 1ndicated at 730, allow statement(s) and/or modily an
existing Deny statement(s) may be added to create a new
version of an access management policy for received
example requests with a positive (e.g., allowed) result in the
path form of the access management policy (as discussed
above), 1 various embodiments. As indicated at 720, simi-
larly, Deny statement(s) may be added to create a new
version of an access management policy for recerved
example requests with a negative (e.g., denied) result in the
path form of the access management policy (as discussed
above), 1n various embodiments.

As indicated at 740, simplification(s) 1n the policy may be
identified for the new version of the access management
policy from the path form of the access management policy.
For example, a policy generator may:

a) Identily paths that can be merged without changing

semantics.

b) Identily paths that can be merged aggressively, which
changes the semantics. Calculate the resulting path
differences as the extra permissions.

¢) Convert each merging option mnto a new policy.

As discussed above, simplification precision parameters
may be received, 1n some embodiments, to determine how
much to optimize or condense a new version ol a policy
being generated. As indicated at 750, simplifications may be
performed on the path form of the new version of the access
management policy according to a simplification precision
parameter. For example, a policy generator may:

5

10

15

20

25

30

35

40

45

50

55

60

65

12

a) Use a precision parameter to prune the list of literals

b) If a simplification changes the semantics, report the

extra permissions as a warning.

As noted discussed above, to allow positive requests, a
policy generator may relax a provided policy so that 1t
allows positive requests. In order to perform simplification,
the amount of relaxing performed on the policy may be
reduced. For example, consider an old policy P, a set of

positive requests Rp, and a policy P" obtained from steps
710 and 720 above. P may be relaxed minimally if the
following holds:

{requests allowed by P"}={requests allowed by P} URp.

Relaxing the policy minimally may produce a new policy
that exceeds a size limaits for policies, 1n some embodiments.
Also, the new policy may contain many literals that appear
haphazard or distracting to a reader of the new policy.
Theretfore, the simplification precision parameter may be
used to tune how much detail to drop from the new policy.

In some embodiments, the precision parameter may be set
to multiple different values (e.g., High, Medium, and Low).

High precision may produce the minimally relaxed policy 1n
tull detail. Medium precision may prune action literals by
the valid action names (e.g., 1n host service documentation)
and prune resource literals by the resources used elsewhere
in the old policy. Low precision may {first prunes literals as
with Medium and then prune them further by picking a top
number (e.g., 5) based on how well they match the valid
action names/used resource names. Note that the precision
heuristics may be different in different use cases or sce-
narios.

In various embodiments, the following example algorithm
that relaxes an old policy P minimally to allow one positive
request R:

a) It P allows R, return P.

b) IT P implicitly denies R, return P", where P" 1s P with

a new Allow statement that uses R’s action and

resource.

c) IT P explicitly denies R, get the Deny statement in P that

denies R and relax 1t as follows.

1. If R’s action and resource 1s 1dentical to some of the
statement literals: Use De Morgan’s laws to split the
statement 1nto an equivalent set of smaller state-
ments, then remove the one that matches only R. See
the first figure below as an example.

1. IT R’s action or resource matches a statement literal
with wildcards: Split the statement literal into an
equivalent set of more concrete literals, so that one
of them 1s 1dentical to R’s action/resource. Then
perform step 3a. See the second figure below as an
example, where we omit literals that do not match
legal action names.

Then use the resulting policy to recursively call this algo-
rithm, obtain policy P" from the recursion, and return P".

As indicated at 760, the simplified new version of the
access management policy may be converted back mto a
document form, in some embodiments. For example, the
various paths may be traversed in order to generate the
corresponding new version ol the access management
policy.

As discussed above with regard to FIGS. 1 and 4, gen-
erating a policy to achieve expected results may implicate
other policies which may also aflect whether the expected
results of for example requests made with respect to one
policy are achieved. In some embodiments, an access man-
agement policy may include different types, such as identity
policy (e.g., associated with a user, group, or role), a
resource policy (e.g., associated with a resource hosted or
implemented 1 a provider network such as provider net-

US 11,483,353 Bl

13

work 200), session policy (e.g., limiting access features to a
particular session), access control list policy, service control
policy (e.g., service-wide policy attributes), permission
boundary policy (e.g., describing permissions that can be
granted 1n another policy, among other policies. In various
embodiments, many diflerent types ol policies may be
linked, associated, or otherwise invoked, such that a policy
of a different type may aflect the enforcement of a policy
being generated (e.g., an account-wide or service-specific
policy may have {features that supersede or nform an
identity based policy for one user or role within the account
or service). FIG. 8 1s a high-level flowchart illustrating
vartous methods and techniques to implement detecting
contlicts between a generated access management policy
and mvoked access management policy, according to some
embodiments.

As indicated at 810, a {irst access management policy and
example request(s) to be evaluated according to the first
access management policy with respective results for the
example request(s) may be received, 1n some embodiments.
In various embodiments, the policy and example request(s)
may be received along with a parameter or other indicator to
perform a contlict check with respect to other policies.

As 1ndicated at 820, a second access management policy
that would be invoked to evaluate the example request(s) in
addition to the first access management policy may be
identified, in some embodiments. For example, a request
evaluation may be performed by an identity and access
management system which may according to the request
identify any other policies applicable to the request. For
example, service-wide or resource policies may be appli-
cable depending on the resource being targeted 1n the request
or account-wide policies may be i1dentified according to an
identity of the user in the request.

As indicated at 830, a conflict may be determined between
the respective expected results for the example request(s)
and the second access management policy, 1n some embodi-
ments. For example, similar to the discussion above with
regard to FIG. 7, allow and/or deny statements may be added
(or modified) according to the requests and transformed 1nto
paths. Additionally, applicable paths for the requests may be
generated from the second access management policy and
included for evaluation. If the application of one path from
the second policy blocks a path from the newly generated
policy, then conflict may exist.

As indicated at 840, an indication of the contlict between
the respective expected results for the example requests and
the second access management policy may be provided, in
some embodiments. For example, an interface for a policy
generator may display a contlict by identifying the contlict-
ing request and second policy. In some embodiments, a
suggested correction may be provided. For example, an
allow statement to be included 1n the second policy can be
generated according to the blocking path of the second
policy. In some embodiments, the interface may provide an
option or element to submit a request to modily the conflict
policy. In some embodiments, a permission check may be
first performed to see if a user submitting the requested
change to the second policy has permission to make the
change. If the user does not have permission, a request to
send a notification to a user or other owner of the second
policy can be requested and sent, including the requested
change to be made.

The methods described herein may in various embodi-
ments be implemented by any combination of hardware and
software. For example, in one embodiment, the methods
may be implemented by a computer system (e.g., a computer

10

15

20

25

30

35

40

45

50

55

60

65

14

system as 1n FIG. 9) that includes one or more processors
executing program instructions stored on a computer-read-
able storage medium coupled to the processors. The program
instructions may be configured to implement the function-
ality described herein (e.g., the functionality of various
servers and other components that implement the network-
based wvirtual computing resource provider described
herein). The various methods as 1llustrated 1n the figures and
described herein represent example embodiments of meth-
ods. The order of any method may be changed, and various
clements may be added, reordered, combined, omitted,
modified, etc.

Embodiments of resource state evaluation of access con-
trol policies as described herein may be executed on one or
more computer systems, which may interact with various
other devices. One such computer system 1s illustrated by
FIG. 9. In different embodiments, computer system 1000
may be any of various types of devices, including, but not
limited to, a personal computer system, desktop computer,
laptop, notebook, or netbook computer, mainiframe com-
puter system, handheld computer, workstation, network
computer, a camera, a set top box, a mobile device, a
consumer device, video game console, handheld video game
device, application server, storage device, a peripheral
device such as a switch, modem, router, or in general any
type ol compute node, computing device, or electronic
device.

In the illustrated embodiment, computer system 1000
includes one or more processors 1010 coupled to a system
memory 1020 via an input/output (I/O) interface 1030.
Computer system 1000 further includes a network interface
1040 coupled to I/O iterface 1030, and one or more
input/output devices 1050, such as cursor control device
1060, keyboard 1070, and display(s) 1080. Display(s) 1080
may 1nclude standard computer monitor(s) and/or other
display systems, technologies or devices. In at least some
implementations, the input/output devices 1050 may also
include a touch- or multi-touch enabled device such as a pad
or tablet via which a user enters mput via a stylus-type
device and/or one or more digits. In some embodiments, 1t
1s contemplated that embodiments may be implemented
using a single mstance of computer system 1000, while 1n
other embodiments multiple such systems, or multiple nodes
making up computer system 1000, may be configured to host
different portions or instances of embodiments. For
example, 1n one embodiment some elements may be 1mple-
mented via one or more nodes of computer system 1000 that
are distinct from those nodes implementing other elements.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a
multiprocessor system including several processors 1010
(e.g., two, four, eight, or another suitable number). Proces-
sors 1010 may be any suitable processor capable of execut-
ing instructions. For example, in various embodiments,
processors 1010 may be general-purpose or embedded pro-
cessors 1mplementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 1010 may commonly, but not
necessarily, implement the same ISA.

In some embodiments, at least one processor 1010 may be
a graphics processing unit. A graphics processing unit or
GPU may be considered a dedicated graphics-rendering
device for a personal computer, workstation, game console
or other computing or electronic device. Modern GPUs may
be very eflicient at manipulating and displaying computer
graphics, and their highly parallel structure may make them

US 11,483,353 Bl

15

more eflective than typical CPUs for a range of complex
graphical algornithms. For example, a graphics processor
may 1mplement a number of graphics primitive operations in
a way that makes executing them much faster than drawing
directly to the screen with a host central processing unit
(CPU). In various embodiments, graphics rendering may, at
least 1n part, be implemented by program instructions con-
figured for execution on one of, or parallel execution on two
or more of, such GPUs. The GPU(s) may implement one or
more application programmer interfaces (APIs) that permit
programmers to ivoke the functionality of the GPU(s).
Suitable GPUs may be commercially available from vendors
such as NVIDIA Corporation, ATT Technologies (AMD),
and others.

System memory 1020 may be configured to store program
instructions and/or data accessible by processor 1010. In
various embodiments, system memory 1020 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram 1nstructions and data implementing desired functions,
such as those described above (e.g., policy evaluators and/or
other features of identity and access control systems, ser-
vices or other systems that implement resource state evalu-
ation of access control policies) are shown stored within
system memory 1020 as program instructions 1025 and data
storage 1035, respectively. In other embodiments, program
instructions and/or data may be received, sent or stored upon
different types ol computer-accessible media or on similar
media separate from system memory 1020 or computer
system 1000. Generally speaking, a non-transitory, com-
puter-readable storage medium may include storage media
or memory media such as magnetic or optical media, e.g.,
disk or CD/DVD-ROM coupled to computer system 1000
via I/O interface 1030. Program 1nstructions and data stored
via a computer-readable medium may be transmitted by
transmission media or signals such as electrical, electromag-
netic, or digital signals, which may be conveyed via a
communication medium such as a network and/or a wireless
link, such as may be implemented via network interface
1040.

In one embodiment, I/O nterface 1030 may be configured
to coordinate I/O tratlic between processor 1010, system
memory 1020, and any peripheral devices in the device,
including network interface 1040 or other peripheral inter-
faces, such as mput/output devices 1050. In some embodi-
ments, I/O mterface 1030 may perform any necessary pro-
tocol, timing or other data transformations to convert data
signals from one component (e.g., system memory 1020)
into a format suitable for use by another component (e.g.,
processor 1010). In some embodiments, I/O iterface 1030
may 1nclude support for devices attached through various
types of peripheral buses, such as a variant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard, for example. In some embodi-
ments, the function of I/O interface 1030 may be split into
two or more separate components, such as a north bridge and
a south bridge, for example. In addition, in some embodi-
ments some or all of the functionality of IO interface 1030,
such as an interface to system memory 1020, may be
incorporated directly into processor 1010.

Network interface 1040 may be configured to allow data
to be exchanged between computer system 1000 and other
devices attached to a network, such as other computer
systems, or between nodes of computer system 1000. In
various embodiments, network interface 1040 may support

10

15

20

25

30

35

40

45

50

55

60

65

16

communication via wired or wireless general data networks,
such as any suitable type of Ethernet network, for example;
via telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks;
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol.

Input/output devices 1050 may, 1n some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computer system 1000. Multiple
input/output devices 1050 may be present 1n computer
system 1000 or may be distributed on various nodes of
computer system 1000. In some embodiments, similar mnput/
output devices may be separate from computer system 1000
and may 1nteract with one or more nodes of computer system
1000 through a wired or wireless connection, such as over
network intertace 1040.

As shown 1 FIG. 9, memory 1020 may include program
instructions 1025, configured to implement the various
methods and techniques as described herein, and data stor-
age 1035, comprising various data accessible by program
instructions 1025. In one embodiment, program instructions
1025 may include software elements of embodiments as
described herein and as illustrated 1n the Figures. Data
storage 1035 may include data that may be used in embodi-
ments. In other embodiments, other or different software
clements and data may be included.

Those skilled 1n the art will appreciate that computer
system 1000 1s merely illustrative and 1s not intended to limat
the scope of the techniques as described herein. In particular,
the computer system and devices may include any combi-
nation ol hardware or software that can perform the indi-
cated functions, including a computer, personal computer
system, desktop computer, laptop, notebook, or netbook
computer, mainirame computer system, handheld computer,
workstation, network computer, a camera, a set top box, a
mobile device, network device, internet appliance, PDA,
wireless phones, pagers, a consumer device, video game
console, handheld video game device, application server,
storage device, a peripheral device such as a switch, modem,
router, or in general any type of computing or electronic
device. Computer system 1000 may also be connected to
other devices that are not illustrated, or instead may operate
as a stand-alone system. In addition, the functionality pro-
vided by the 1llustrated components may 1n some embodi-
ments be combined in fewer components or distributed in
additional components. Similarly, in some embodiments, the
functionality of some of the illustrated components may not
be provided and/or other additional functionality may be
available.

Those skilled 1n the art will also appreciate that, while
various 1tems are 1llustrated as being stored 1n memory or on
storage while being used, these items or portions of them
may be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, in other embodiments some or all of
the software components may execute 1n memory on another
device and communicate with the 1llustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as 1nstructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a non-
transitory, computer-accessible medium separate from com-
puter system 1000 may be transmitted to computer system

US 11,483,353 Bl

17

1000 via transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a commu-
nication medium such as a network and/or a wireless link.
Various embodiments may further include receiving, send-
ing or storing istructions and/or data implemented 1n accor-
dance with the foregoing description upon a computer-
accessible medium. Accordingly, the present invention may
be practiced with other computer system configurations.

It 1s noted that any of the distributed system embodiments
described herein, or any of their components, may be
implemented as one or more web services. For example,
nodes within an identity and access management system
may present 1dentity and access management services to
clients as network-based services. In some embodiments, a
network-based service may be implemented by a software
and/or hardware system designed to support interoperable
machine-to-machine interaction over a network. A network-
based service may have an interface described 1n a machine-
processable format, such as the Web Services Description
Language (WSDL). Other systems may interact with the
web service 1n a manner prescribed by the description of the
network-based service’s interface. For example, the net-
work-based service may define various operations that other
systems may mvoke, and may define a particular application
programming interface (API) to which other systems may be
expected to conform when requesting the various opera-
tions.

In various embodiments, a network-based service may be
requested or ivoked through the use of a message that
includes parameters and/or data associated with the net-
work-based services request. Such a message may be for-
matted according to a particular markup language such as
Extensible Markup Language (XML), and/or may be encap-
sulated using a protocol such as Simple Object Access
Protocol (SOAP). To perform a web services request, a
network-based services client may assemble a message
including the request and convey the message to an address-
able endpoint (e.g., a Uniform Resource Locator (URL))
corresponding to the web service, using an Internet-based
application layer transfer protocol such as Hypertext Trans-
ter Protocol (HTTP).

In some embodiments, web services may be implemented
using Representational State Transifer (“RESTTul”) tech-
niques rather than message-based techniques. For example,
a web service implemented according to a RESTTul tech-
nique may be invoked through parameters included within
an HTTP method such as PUT, GET, or DELETE, rather
than encapsulated within a SOAP message.

The various methods as illustrated in the FIGS. and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereotf. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended that the invention embrace
all such modifications and changes and, accordingly, the
above description to be regarded 1n an illustrative rather than
a restrictive sense.

What 1s claimed 1s:

1. A system, comprising:

at least one processor; and

a memory, storing program instructions that when
executed by the at least one processor, cause the at least
one processor to 1mplement an identity and access

10

15

20

25

30

35

40

45

50

55

60

65

18

management system, the identity and access manage-
ment system configured to:
receive, via an interface of the identity and access
management system, a request to generate a new
access management policy from a provided access
management policy and one or more example
requests with respective expected results for the one
or more example requests;
responsive to the request to generate the new access
management policy:
determine one or more updates to the provided
access management policy that cause the respec-
tive expected results for the one or more example
requests to occur when the new access manage-
ment policy, generated based on the determined
one or more updates, 1s enforced;
generate the new access management policy based
on the determined one or more updates; and
provide, via the interface, the generated new access
management policy.

2. The system of claim 1, wherein to generate the new
access management policy based on the one or more
updates, the identity and access management system 1s
configured to:

convert a version ol the provided access management

policy mto path form that includes the one or more
updates;

identify one or more simplifications to perform for the

version of the provided access management policy
from the path form:;

perform the one or more simplifications on the path form

to generate a simplified path form; and

convert the simplified path form of the version of the

converted access management policy into a document
form of the version of the access management policy to
provide as the new access management policy.
3. The system of claim 2, wheremn the one or more
identified simplifications are performed according to a sim-
plification precision parameter received as part of the
request.
4. The system of claim 2, wherein the one or more
simplifications 1dentily one or more paths in the path form
to merge that change semantics of the new access manage-
ment policy.
5. A method, comprising;:
recerving, by an i1dentity and access management system,
an access management policy and one or more example
requests to be evaluated according to the access man-
agement policy with respective expected results for the
one or more example requests;
determining, by the identity and access management
system, one or more updates to the received access
management policy that cause the respective expected
results for the one or more example requests to occur
when a new version of the access management policy
based on the one or more updates 1s enforced; and

generating the new version of the access management
policy based on the one or more updates.

6. The method of claim 5, further comprising;:

converting, by the 1dentity and access management sys-

tem, the new version of the access management policy

into path form;

identifying, by the identity and access management
system, one or more simplifications to perform for
the generated new version of the access management
policy from the path form;

US 11,483,353 Bl

19

performing, by the i1dentity and access management
system, the 1dentified one or more simplifications on
the path form to generate a simplified path form; and

converting, by the identity and access management
system, the generated simplified path form of the
generated new version ol the access management
policy mto a document form of the generated new
version of the access management policy.

7. The method of claim 6, wherein the one or more
simplifications are performed according to a recerved sim-
plification precision parameter.

8. The method of claim 6, wherein the one or more
simplifications 1dentily one or more paths i1n the path form
to merge without changing semantics of the generated new

version of the access management policy.

9. The method of claim 6, wherein the one or more
simplifications 1dentily one or more paths i1n the path form
to merge that change semantics of the generated new version
of the access management policy.

10. The method of claim 9, further comprising providing,
by the 1dentity and management system, warning informa-
tion that indicates a change 1n permissions corresponding to
the change 1n the semantics of the generated new version of
the access management policy.

11. The method of claim 5, further comprising:

generating, by the i1dentity and access management sys-

tem, a second new version of the access management
policy that includes one or more simplifications applied
to the generated new version of the access management
policy; and

providing, by the identity and access management system,

the generated new version of the access management
policy and the generated second new version of the
access management policy via an interface of the
identity and access management system.

12. The method of claim 11, wherein generating the
second new version of the identity and access management
policy that includes one or more simplifications applied to
the generated new version of the identity and access man-
agement policy, and providing the generated second new
version, are performed in response to a request for another
new version of the access management policy different than
a previous request to generate the new version of the access
management policy.

13. The method of claim 3, wherein the access manage-
ment policy and the one or more example requests are
received as part of a request to generate the new version of
the access management policy, the request received via an
interface for the identity and access management system and
wherein the method further comprises providing, via the
interface of the identity and access management system, the
generated new version of the access management policy.

10

15

20

25

30

35

40

45

50

20

14. One or more non-transitory, computer-readable stor-
age media, storing program instructions that when executed
on or across one or more computing devices cause the one
or more computing devices to implement:
recerving a request to generate a new access management
policy from a provided access management policy and
one or more example requests with respective expected
results for the one or more example requests;

generating the new access management policy that causes
the respective expected results for the one or more
example requests to occur when the new of the access
management policy 1s enforced; and

providing the generated new access management policy 1n

response to the request.

15. The one or more non-transitory, computer-readable
storage media of claim 14, wherein, 1n generating the new
access management policy, the program instructions cause
the one or more computing devices to further implement:

converting a version ol the access management policy

modified for the one or more example requests 1nto
path form;

identilying one or more simplifications to perform for the

converted version of the access management policy
from the path form:;

performing the one or more simplifications on the path

form to generate a simplified path form; and
converting the simplified path form of the version of the

access management policy into a document form to

provide as the new access management policy.

16. The one or more non-transitory, computer-readable
storage media of claim 15, wherein the one or more sim-
plifications are performed according to a received simplifi-
cation precision parameter.

17. The one or more non-transitory, computer-readable
storage media of claim 15, wherein the one or more sim-
plifications 1dentily one or more paths 1n the path form to
merge without changing semantics of the generated new
version of the access management policy.

18. The one or more non-transitory, computer-readable
storage media of claim 15, wherein the one or more sim-
plifications 1dentily one or more paths 1n the path form to
merge that change semantics of the generated new version of
the access management policy.

19. The one or more non-transitory, computer-readable
storage media of claim 14, wherein the one or more example
requests comprise a positive request and a negative request.

20. The one or more non-transitory, computer-readable
storage media of claim 14, wherein the one or more com-
puting devices are implemented as part of an identity and
access management service oflered by a provider network
that offers one or more other services that host one or more
resources included 1n the one or more example requests.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

