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Abstract—Decentralized exchanges (DEXs) have transformed
the financial landscape by enabling transparent, permissionless
token trading on blockchains. These platforms rely on smart
contracts called liquidity pools. Each pool allows for the
trading of two tokens, with the exchange price dynamically
calculated by an automated algorithm based on the available
liquidity. Uniswap, the leading DEX on Ethereum, features
over 400,000 pools and tokens, supporting an average daily
trading volume of $1.3 billion USD since 2024. However, frag-
mentation across DEXs and the rapid growth in the number of
tokens significantly complicate the search for optimal exchange
rates, particularly when no direct trading pair exists. As a
result, it often requires a sequence of trades across multiple
pools, a challenge known as routing. Routing is typically
modeled as a shortest path problem on a given graph of tokens.
Existing algorithms have significant drawbacks: scalable ap-
proaches often lack guarantees for route validity, while robust
methods struggle with the scale and dynamic nature of modern
decentralized exchanges.

In this work, we address the problem of optimal routing on
DEXs. We demonstrate that by leveraging the structural prop-
erties of this graph, in particular its freewidth, it is possible to
reconcile scalability with robustness. On the theoretical side, we
adapt a parameterized algorithm utilizing treewidth to handle
the dynamic setting of DEXSs, where pools frequently change.
We show that our approach achieves improved time complexity
over existing methods and additionally provides a formal
guarantee on the quality of the computed routes. We present
empirical analysis on real Uniswap data to demonstrate the
suitability of a parameterized online algorithm. Furthermore,
we have implemented this algorithm in a free and open-source
tool called Hermes and compared it with existing methods.
On small instances where both tools produced results, Hermes
reduced the average runtime by four orders of magnitude, from
2.81 seconds to 0.0002 seconds. Notably, Hermes is the only
tool capable of computing routes in the presence of 100,000
tokens. It achieves an average runtime of 0.19 seconds, while
other approaches fail to complete within the allotted time.

Index Terms—Ethereum, Decentralized Exchanges, Uniswap,
Routing, Single-Source Shortest Path (SSSP), Parameterized
Algorithms, Tree Decomposition

1. Introduction

Decentralized Finance (DeFi). Smart contracts are
blockchain-based programs that manage, transfer, and con-
trol digital assets without intermediaries. This significant
advancement has led to the use of smart contracts in de-
veloping a new ecosystem that enables advanced, compos-
able financial functions beyond basic token transfers on the
blockchain, now collectively referred to as decentralized
finance (DeFi) [1]. DeFi has grown rapidly due to its trans-
parent, trustless, and programmable financial services. Cur-
rently, the total value locked (TVL in DeFi on Ethereum
alone exceeds 65.9 billion USD [2], [3]E]

Decentralized Exchanges (DEX). Decentralized exchanges
(DEXs5s) are a cornerstone of the DeFi ecosystem, enabling
the permissionless trading of digital assets. Among the
different DEX types, Automated Market Makers (AMMs)
have emerged as the most widely adopted by nearly every
metric [4]. Central to AMMs is the concept of a liquidity
pool: a smart contract that holds reserves of two (or more)
tokens, enabling users to trade between them without inter-
mediaries. The exchange rate between two tokens within a
liquidity pool is autonomously determined by a function of
the current reserves. More details are provided in Section 3]
Uniswap is the leading DEX by TVL on Ethereum. Since
2024, Uniswap has hosted an average daily trading volume
of 1.3 billion USD, with an all-time cumulative trading
volume reaching 2.26 trillion USD [2].

Routing in Decentralized Exchanges. A fundamental chal-
lenge within the DEX ecosystem is discovering optimal
exchange rates, a problem necessitated by the decentralized
and fragmented liquidity landscape. Often, a direct trading
pair between two assets does not exist, requiring a trader to
perform a sequence of trades across several liquidity pools,
a process known as routing. Routing can be modeled as
a graph problem on G = (V, E,w), where the vertices

1. Total value locked refers to the aggregate value of all assets deposited
in smart contracts.
2. All prices in this paper are reported as of 15-06-2025.



V' represent tokens, the edges E correspond to liquidity
pools connecting pairs of tokens, and the weights w encode
the spot exchange rates available for trading between those
tokens. A route is a sequence of tokens whose cumulative
edge weights determine the final exchange rate. The goal
is to find the route between two tokens that yields the best
price. See Section [3| for details.

A well-known special case of routing is arbitrage,
where a trader earns risk-free profit by exploiting price
discrepancies for the same asset across different pools. This
problem is commonly modeled as finding a negative-weight
cycle in the aforementioned graph [[1]], [4]]. Arbitrages have
been studied exhaustively in the literature on DEX due to
their risk-free profits [3]. However, the reported arbitrages
constitute only a small fraction of trades, accounting for
approximately 11.71% of daily volume on Uniswap [2], [5].

Algorithmic Challenges in Routing. While financial ar-
bitrage has been extensively studied in both traditional
and decentralized markets [3|], [4], research focused on
optimal routing within decentralized exchanges remains
comparatively limited. The existing body of work reveals
two primary algorithmic challenges. First, our study shows
that current routing algorithms scale poorly as the number
of assets increases. This issue is particularly acute given
the operational constraints of modern blockchains, such as
Ethereum’s 12-second block time, and the dynamic nature of
the ecosystem, which features continuously changing prices.
Second, the presence of arbitrage opportunities, which man-
ifest as negative-weight cycles in the graph-based prob-
lem formulation, renders standard shortest-path algorithms
such as Bellman-Ford incapable of finding optimal routes.
This situation has led to a dichotomy in existing solutions:
they are either general-purpose algorithms that guarantee
optimality but are often too slow for practical on-chain
execution, or they rely on heuristics that are faster but offer
no formal guarantees on the quality of the route.

Our Approach: Parameterized Algorithms. In this work,
we bridge this gap by designing a parameterized algo-
rithm tailored to the structural properties of DEX trans-
action graphs [6]. The design of such algorithms follows
a paradigm that diverges from traditional runtime analysis.
Instead of measuring performance solely against the input
size, a parameterized algorithm’s efficiency is also analyzed
with respect to an additional structural property of the input,
known as a parameter. For graphs, a common and powerful
parameter is treewidth, which measures how closely a graph
resembles a tree. Our central thesis is that real-world DEX
transaction graphs exhibit low treewidth. By exploiting this
structural property, we have developed an algorithm that
is both theoretically sound, due to its formal complexity
analysis, and practically efficient, a claim we substantiate
through extensive experiments on real-world DEX data.
This approach strikes a crucial balance, achieving provable
optimality without sacrificing the performance required in

the demanding DEX environment.

Our Contributions. In this paper, we analyze the structural
properties of Uniswap exchange pools. Our main contribu-
tions are as follows:

« We conduct, to our knowledge, the first large-scale
empirical study of the parameters of real-world
DEX graphs. By analyzing data from Uniswap, we
demonstrate that these graphs exhibit low treewidth.

« We extend a parameterized algorithm that leverages
the low treewidth of DEX graphs to find optimal
routes efficiently. The algorithm is specifically tai-
lored for the dynamic, online environment of DEXs,
where liquidity pools are constantly changing. Our
formal complexity analysis shows that its theoretical
runtime outperforms state-of-the-art algorithms.

« We implement the algorithm in an open-source rout-
ing tool called Hermes and conduct a comprehensive
experimental evaluation using real-world Uniswap
transaction data covering 20,000 blocks. The results
show that our treewidth-based approach achieves
superior practical performance compared to existing
methods. Hermes is the only method capable of pro-
cessing token sets of size 100,000, with an average
query time of 0.19 seconds. For instances where
both tools yield results, Hermes reduces the average
runtime from 2.81 seconds to 0.0002 seconds, an
improvement of over four orders of magnitude.

2. Related Work

Arbitrages. The majority of the literature on routing in
DEXs focuses on identifying arbitrage opportunities. In
such scenarios, trader exploits price discrepancies across
trading pools to generate profit. Recent studies systemati-
cally analyze historical trade data, uncovering millions of
executed arbitrage cases through the detection of cyclic
trading patterns [[1], [7]. Consequently, a substantial body
of literature models the arbitrage problem as a graph and
applies graph-based algorithms to identify negative cycles
that signal profitable arbitrage opportunities. Researchers
have employed algorithms such as Johnson’s algorithm [/1]
and modified variants of Bellman-Ford [4], 8] for this pur-
pose. Beyond graph-based methods, some researchers have
approached arbitrage detection as a convex optimization
problem [9], while others have utilized artificial intelligence
techniques, such as Graph Neural Networks (GNNs), for
this purpose [10].

Routing. In contrast to arbitrage detection, there are only
two notable studies on routing in DEXs. Diamandis et
al. [11] formulate routing as a convex optimization prob-
lem and employ decomposition techniques together with
commercial solvers. Zhang et al. [4] introduce the Modified
Moore-Bellman-Ford algorithm, which adapts the standard



Bellman-Ford algorithm to produce valid routes even in
the presence of negative cycles. They further improve their
approach by using line graphs to enhance practical perfor-
mance. While their work mainly targets arbitrage detection,
it also finds shorter routes between tokens. However, this
method does not scale to thousands of tokens, leaving robust
and scalable routing algorithms as an open challenge.

Parameterized Algorithms in Blockchain. Parameterized
algorithms have been applied to blockchain problems by
exploiting structural properties of underlying graphs. For
example, NP-hard problems like optimal block produc-
tion become tractable on instances with low pathwidth or
treedepth [[12], [13]]. Similarly, smart contract analysis ben-
efits from the low treewidth of control flow graphs [14]]. To
our knowledge, this is the first work to apply such techniques
to decentralized exchanges.

3. Preliminaries

Automated Market Makers. An Automated Market Maker
(AMM) is a protocol for decentralized trading that re-
places traditional order books with deterministic pricing
algorithms [[1]. In an AMM, prices are set by a mathematical
function of the current token reserves in each liquidity pool.
The most widely used class of AMMs is the Constant
Function Market Maker (CFMM), of which Uniswap is
a prominent example. In Uniswap V2, the CFMM uses
the constant product formula, which maintains a constant
product of the reserves of two tokens » and v in a liquidity
pool: R, - R, = k, where k is a fixed constant. Here, R,
and R, represent the current quantities (reserves) of tokens
u and v held in the pool, respectively. This means that any
trade will adjust the reserves of both tokens while keeping
their product constant. The spot price from token u to token
v is determined by the ratio of their reserves, specifically
price(u — v) = g:. Uniswap V3 allows liquidity providers
to concentrate capital within custom price ranges, increasing
efficiency. Uniswap V4 introduces hooks for customizable
trading strategies and fee structures [[15]. All three versions
are active on Ethereum.

For the scope of this paper, these versions share two
pricing notions. The first is the spot price, which depends on
the current reserves and indicates the current market price.
The second is the trade price, which also accounts for the
size of the trade. The applications of both concepts have
been thoroughly studied in the literature [3]. In this work,
we focus on spot prices.

Modeling the DEX Ecosystem as a Graph. To analyze
and optimize trade routing across a decentralized exchange
ecosystem, we employ the abstraction of a weighted directed
graph G = (V,E,w). In this model, the set of vertices
V' represents the universe of available tokens. A directed
edge (u,v) € E exists if there is a liquidity pool capable
of direct trading from token u to token v. A path in this

graph, which is a sequence of connected vertices, therefore
corresponds to a multi-hop trade that converts a source token
into a destination token through one or more intermediaries.

Shortest Path Formulation. The objective in trade routing
is to find a path that maximizes the product of exchange
rate Since standard shortest path algorithms are designed
to minimize a sum of weights, we align our problem by
defining the weight of an edge (u,v) as the negative loga-
rithm of the exchange rate: w(u,v) = — log(price(u — v)).
In the case of multiple liquidity pools between two to-
kens, we choose one pool maximizing the exchange rate
max price(u — v), thus avoiding the necessity of consider-
ing the multi-edge graphs. This weight assignment converts
the maximization of a product into the minimization of
a sum, thereby reformulating the optimal routing task as
a Single-Source Shortest Path (SSSP) problem. A critical
consideration in this model is the presence of negative-
weight cycles, which correspond to arbitrage opportunities:
trading paths that start and end with the same token and yield
a profit. Such cycles can lead to infinitely cheap paths, a
complication that must be handled by the chosen algorithm.

Graph Notation and Terminology. To develop an algo-
rithm that leverages the specific topology of the DEX graph,
we must first establish a formal language for discussing its
local properties. We define the neighborhood of a vertex v,
denoted N(v), as the set of all vertices directly accessible
from it N(v) := {u | (v,u) € E}. Furthermore, for any
subset of vertices S C V, the subgraph induced by S,
denoted G[S], consists of the vertices in S and all edges
from the original graph that connect any two vertices in .S:

G[S] == (S,EN (S x S)).

Tree Decompositions and Treewidth. The efficiency of
our algorithm hinges on a structural parameter known as
treewidth, which quantifies how “tree-like” a graph is. For-
mally, the treewidth of a graph G = (V| E) is defined
via a tree decomposition. A tree decomposition is a pair
(T,{X; |i€I}), where T = (I,F) is a tree and each X;
(called a bag) is a subset of V, satisfying:
1) The union of all bags equals V; i.e., Uiel X, =V.
2) For every edge (u,v) € E, there is at least one bag X
containing both u and v.
3) For any vertex v € V, the set of bags containing v
forms a connected subtree in 7.

The width of a tree decomposition is max;ey | X;| — 1. The
treewidth of a graph G, denoted tw(G), is the minimum
width over all possible tree decompositions of G. A low
treewidth indicates a structure amenable to efficient dynamic
programming, a property we exploit extensively.

Chordal Graphs and Chordal Completion. Our algorithm
operates not on the original graph G, but on a chordal
supergraph of it. A graph is chordal if every cycle of

3. We assume rates are adjusted for all transaction fees.



four or more vertices has an edge connecting two non-
consecutive vertices (a chord). While most graphs are not
chordal, any graph GG can be transformed into one by adding
a set of “fill-in” edges to create a chordal completion, G.
A key result in graph theory states that the treewidth of a
graph is intrinsically linked to its best chordal completion:
tw(G) = ming w(G) — 1, where the minimum is taken over
all chordal completions of G and w(G) is the size of the
largest clique in G. This relationship is fundamental to our
approach.

All-Pairs Shortest Paths via Directed Path Consistency.
The core of our algorithm is an efficient method for solving
the All-Pairs Shortest Paths (APSP) problem on graphs with
low treewidth. The method relies on enforcing Directed Path
Consistency (DPC) using a PEO. A weighted graph is DPC
with respect to an ordering m = (vy,...,v,) if for every
triple of vertices v;,v;, v, with ¢ < j < k, the path cost
from v; to vy, is no greater than the cost of the path through
vj; e, w(v, vg) < w(v,v;) + w(vj,vg).

Enforcing this property on an arbitrary graph with an
arbitrary ordering takes O(n®) time. However, by using
the PEO of a chordal completion G, the process can be
dramatically accelerated. The algorithm iterates backward
through the PEO (from v,, to v1), and at each step vy, it only
needs to check for path updates between pairs of neighbors
of vy that appear earlier in the ordering. Because a PEO
ensures these neighbors form a clique of size at most wA(G),
the complexity of enforcing DPC is reduced to O(n-w(G)?),
which is equivalent to O(n - tw(G)?).

The advantage of the DPC property is that all shortest
paths become bitonic: any shortest path from u to v consists
of a segment where vertices decrease in the PEO order,
followed by a segment where they increase. This structure
allows SSSP queries to be answered efficiently in two passes
over the PEO array, see Algorithm (4] for details.

4. Routing Algorithm

4.1. The Algorithm Overview

Our proposed algorithm transforms a general graph into
a structure where shortest path queries can be answered
with remarkable efficiency. This transformation is achieved
through a multi-phase process, illustrated in Figure [T} The
first three phases constitute an offline preprocessing stage,
which is performed only once. The final phase is the online
query stage, designed for rapid, repeated execution.

The main idea is to construct a chordal supergraph lever-
aging graph’s tree decomposition. The chordal graph admits
a Perfect Elimination Ordering (PEO). This ordering is then
used to enforce Directed Path Consistency (DPC). The DPC
property is used to answer the Single-Source Shortest Path
(SSSP) queries efficiently. The algorithm is designed to
handle graphs with negative-weight cycles, ensuring that the

results are correct even in the presence of such cycles. The
entire process is summarized in Algorithm [I]

Algorithm 1 Unified Algorithm for Treewidth-Based Batch
SSSP Queries

Input: A weighted graph G = (V, E, d), a set of source
vertices @ = {s1,...,54}.
Output: A list of SSSP distance arrays
(D[s1],...,D[sq]), where each Dls;] contains the
distances from source s; to every vertex in V.
# — Structural Preprocessing —
1: T < ComputeTreeDecomposition(G)
2: (G, ) + ComputeCompletionAndPEO(T')
# — Weights Preprocessing —
3: d* + EnforceDPC(G, 7, d)
# — Process each SSSP query —
4: for i <+ 1 to g do R
D[s;] < QuerySSSP(G, d*, s;)
6: end for

The correctness and efficiency of this framework are
formalized in Theorem [

Theorem 1 (Complexity and Correctness). Let G =
(V,E,d) be a weighted graph with n = |V| vertices and
treewidth tw(QG). The algorithm described in Algorithm
has an overall preprocessing time of O(n - tw(G)?) and
answers each SSSP query in O(n - tw(G)?) time.

For each source vertex s; € Q, the resulting distance
array D; has the following properties for any target vertex
teV:

o If there are no negative-weight cycles on any path
from s; to t, then D[s;][t] stores the correct shortest
path distance from s; to t in the original graph G.

o If there is a negative-weight cycle on a path from s;
to t, the corresponding distance D|[s;][t] will be less
or equal to the shortest simple path (a path with no
repeated vertices) distance from s; to t in G.

Phase 1: Tree Decomposition. This initial phase (line [T] of
Algorithm [T)) computes a tree decomposition for the input
graph G. The goal is to find a low-width decomposition,
as its width, the treewidth tw(G), is the primary parameter
governing the complexity of the entire preprocessing stage.

A landmark result in parameterized complexity theory
by Bodlaender proves that it is Fixed-Parameter Tractable
(FPT).

Lemma 1 (Complexity of Tree Decomposition). For any
fixed parameter k, there exists a linear-time algorithm that
can determine if a graph G has treewidth at most k and, if
so, produce a corresponding tree decomposition in O(f(k)-
|[V(G)|) time. [16]].

Additionally, many heuristic approaches have been de-
veloped. These heuristics have been refined and imple-
mented in highly optimized solvers. Modern, competitive



solvers can often find low-width decompositions for very
large graphs arising in practice [[17]].

Phase 2: Fill-in and PEO. In this phase (line 2] of Al-
gorithm [1), we construct a minimal chordal completion G
and a corresponding Perfect Elimination Ordering (PEO)
7w from the tree decomposition. The process, detailed in
Algorithm 2] iterates through the tree bags from leaves to the
root. In each step, it turns the current leaf bag into a clique
and prepends its unique vertices (those not in its parent bag
and have not been seen before) to the PEO.

Algorithm 2 ComputeCompletionAndPEO(G = (V, E), T)

LG G 0
: while 7 is not empty do
© X <« leaf(T)

1
2
3
4: Y « parent(7, X) or () if X is the root
5: E +— EU{(u,v) |u,v € X,u# v}

6: T [(X\Y)\7]+7

7: T« T\{X}

8: end while

9: return (G, )

We summarize the key results about the correctness and
complexity below.

Lemma 2 (Properties of the Completion and PEO). Let

G and 7 be the outputs of Algorithm The following

properties hold:

(a) The graph G is a chordal supergraph of G. N

(b) The clique number of the completion satisfies w(G) =
tw(G) + 1.

(c) The sequence 7 is a valid Perfect Elimination Ordering
for G.

(d) The algorithm runs in O(n - (tw(G) + 1)?) time.

Proof (sketch). For (a)-(c), we refer to the standard prop-
erties relating tree decompositions to chordal graphs [18].
For (d), we analyze the algorithm as follows: we can as-
sume the given tree decomposition has O(n) nodes. The
algorithm iterates through each node, where the dominant
operation is making the bag a clique (line [5). This step takes
O((tw(G) 4+ 1)?) = O(tw(G)?) time. The total complexity
is therefore O(n - (tw(G) + 1)2). O

Phase 3: Enforcing the DPC. This phase executes the
‘EnforceDPC* function (Algorithm [3), which corresponds
to line B] of the main algorithm. It takes the chordal graph
G, its PEO 7, and the original distances d to produce a new
distance matrix d*.

This procedure does not compute the final all-pairs
shortest paths. Instead, it modifies the edge weights to satisfy
the Directed Path Consistency (DPC) property relative to the
PEO 7. Specifically, after ‘EnforceDPC* terminates, for any
path v; — v — v; where v is a common neighbor of
v; and v; that appears later in the PEO (i.e., 7,5 < k), the

triangle inequality d*(v;,v;) < d*(v;,vi) + d*(vg,v;) is
guaranteed to hold.

Algorithm 3 EnforceDPC(é = (V, E), T, d)

1: d*(u,v) < d(u,v) forall (u,v) € E and d*(u,v) <= 00
for all (u,v) € E'\ E. ~

2: = (v1,v2,...,0,) is the PEO of G.

3: for k <— n down to 1 do R
for each pair of neighbors v;,v; of v, in G with

i <kandj<kdo
d* (v, v5) <= min(d* (vs, v;), d* (vs, vi)+d* (vk, v;))
end for

end for

return d*

&

IS A4

Lemma 3 (Complexity of Enforcing DPC). The ‘En-
forceDPC* procedure (Algorithm 3)), which applies Directed
Path Consistency on the chordal graph G using its PEO, has
a time complexity of O(n - tw(G)?).

Phase 4: SSSP Queries. The final query phase (lines A}
B) processes the batch of SSSP queries. For each source
s; in the query set @, the algorithm calls the QuerySSSP
procedure (Algorithm [). The algorithm is an adaptation of
the Min-path procedure [[19], [20].

Algorithm 4 QuerySSSP(@ =(V, E),?‘(‘,d*, s)

1: Initialize distance array D[v] < oo for all v € V' \ {s},
Dis] « 0.

2. D[s] « 0.

3: Let m = (v1,...,v,) be the PEO. Let s = v;4y.

4: for k < idx down to 1 do R

5: for each neighbor v; of vy, in G such that j < k do
6: D{vj] < min(D[v;], D[vg] + d*(vk, v;))

7: end for

8: end for

9: for k < 1 to n do R

10: for each neighbor v; of vy, in G such that j > k do
11: D[v;] <= min(D[v,], D[vg] + d*(vg, v;))

12: end for

13: end for

14: return D

Lemma 4 (Complexity of SSSP Query). The QuerySSSP
procedure has a complexity of O(|E|), which in a chordal
graph is bounded by O(n - tw(G)?).

4.2. Handling Dynamic Edge Additions

Real-world graphs are often dynamic. In our context,
new liquidity pools can be added, creating new edges in the
graph. A key advantage of our framework is its ability to
handle many such updates efficiently. If a new edge (u,v)
already exists within the pre-computed chordal completion



@, the underlying structure remains valid. In this scenario,
we can bypass the expensive structural preprocessing steps
(lines of Algorithm [I)). Instead, we only need to up-
date the edge weights and re-run the weights preprocessing
(line . If the new edge is not in G, the full pipeline must
be re-executed.

4.3. Example of the Algorithm

(c) The chordal completion G with fill-in edges (E)
added.

Figure 1: An illustration of the preprocessing pipeline for
the treewidth-based routing algorithm.

We now illustrate the entire pipeline using the graph
from Figure [1}

Input Graph. The process begins with the graph G in
Figure[I{a). We chose the weights to be symmetric d(u,v) =
d(v,u) for simplicity of presentation, generally the al-
gorithm does not require this. The graph has 7 vertices
{v1,...,v7}, the vs are omitted in the figure for clar-
ity. The edges has the following weights: d(vi,v2) = 5,
d(’l)g,’l)g,) = 1, d(vg,’l}g) = 12, d(’l)37’U4) = 2, d(v4,v5) = 7,
d(vg,v7) = 3, and d(vs,v7) = 4.

Phase 1 (Tree Decomposition):. Figure [I(b) shows a valid
tree decomposition 7 of G. The largest bag is of size 3 (e.g.,
X1 ={2,4,6}), so the treewidth is tw(G) =3—-1=2.1tis
straightforward to verify that (i) for each edge (v;,v;) in G,
there exists a bag in 7 containing both v; and v;, and (ii)
for each vertex v;, the bags containing v; form a connected
subtree in 7.

Phase 2 (Fill-in and PEO):. We apply Algorithm 2] to
T to get the chordal completion G and a PEO . Pro-
cessing the bags from the leaves of 7 inwards yields the
chordal graph in Figure [I{c). The required fill-in edges
(shown in purple) are (vo,v4) and (v4,vg) as the pairs of
vertices are present in the bags X; and X3. A valid PEO
m = (ve,vg, V4, v7,V3,01,05) that can be generated from

this process by trimming the bags in the following order:
X4*>X54)X3*>X2%X1.

Phase 3 (Enforcing DPC):. This is the core computational
step (Algorithm [3). We initialize d* with the weights from
G, setting d*(2,4) = co and d*(4,6) = co. The algorithm
iterates backward through the PEO. The only updates that
change a distance value occur for the following vertices:

For v :  d*(va,v4) < min(oo, d* (ve,vs) + d*(vs,v4))
= min(co,1+2) =3

For vy :  d*(v4,vg) < min(oo, d*(ve,v7) + d*(v7,v6))
=min(co,3+4) =7

For vy : d*(va,vg) < min(12,d*(ve,v4) + d* (v4, v6))

=min(12,34+7) =10

" Phase 4 (SSSP Query):. Suppose we are given the query

s = vy. We execute Algorithm [ The distance array D,
ordered by the PEO m = (v2, vg, v4, V7, V3, U1, V5), is ini-
tialized to [00, 00, 0, 00, 00, 00, 00]. The updates proceed as
follows:

Pass 1 (Backward Pass): Pass 2 (Forward Pass):

vg :[3,7,0,00,00,00,00]  ws:[3,7,0,00,4,8, 0]
ve :[3,7,0,11,4,8, o]

vg :[3,7,0,00,00,00,00] w4 :[3,7,0,3,2,8,7]
The remaining vertices in the PEO do not produce further
updates. The final distance array from source vy, ordered by
the PEO, is [3,7,0,3,2,8,7].

vg :[3,7,0, 00, 00, 00, 0]

5. Implementation and Experimental Results

Implementation. We implemented our algorithm in
Python 3 as a tool named Hermes. Hermes is open-
source and released into the public domain. Our
implementation leverages the Python library NetworkX [21]
for graph operations and tree decompositions.
Hermes is available at https://github.com/SanazSafaei/
Hermes-Structure- Aware-Optimal-DEX-Routing.

Benchmarks and Experimental Setting. We collected
a comprehensive dataset by capturing snapshots of all
Uniswap liquidity pools across 20,000 consecutive blocks,
specifically from block 22,820,000 to block 22,839,999.
Data were collected using the official Uniswap APIs [35].
We evaluated Hermes in comparison with the state of the
art Modified Moore Bellman Ford algorithm [4]], which
is the only existing graph based method. For additional
comparison, we also included the standard Bellman Ford
algorithm as a baseline. For each block, we constructed
the corresponding token graph and queried SSSPs from 100
randomly selected tokens, recording the average query time
per block. To further assess scalability, we repeated this
procedure for four different token set sizes: the top 100,
1,000, 10,000, and 100,000 tokens, ranked by TVL in USD.
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Hermes (Ours) MMBF BF
Solved Failed |Timeout Solved Failed Timeout Solved Failed Timeout
# % # % |# % # % |# % # % # % # % # %
100 2,000,000 100.0% |0 0.0% |0 0.0% | 1,999,998 99.9% |0 0.0% 2 0.0% | 60,000 3.0% |1,940,000 97.0% 0 0.0%
1,000 {2,000,000 100.0% |0 0.0% |0 0.0% 0 0.0% |0 0.0% | 2,000,000 100.0% | 27,994 1.3% (1,972,006 98.6% 0 0.0%
10,000 |2,000,000 100.0% |0 0.0% |0 0.0% 0 0.0% |0 0.0% 2,000,000 100.0% | 10,634 0.5%| 13,107 0.6% |1,976,259 98.8%
100,000 | 2,000,000 100.0% |0 0.0% |0 0.0% 0 0.0% |0 0.0% 2,000,000 100.0% | 12,884 0.6% | 3,627 0.1% | 1,983,489 99.1%
Total 8,000,000 100.0% |0 0.0% |0 0.0% |1,999,998 25.0% |0 0.0% |6,000,002 75.0% |111,512 1.4% |3,928,740 49.1% |3,959,748 49.5%

TABLE 1: Success rates for Hermes (ours), MMBF, and BF on routing queries for four token set sizes. “Failed” indicates

cases where the tool did not work due to negative cycles.

Hermes (Ours) MMBF BF
Runtime Completed| Runtime Completed | Runtime Completed
100 0.0002s 2,000,000 | 2.8191s 1,999,998 | 0.0158s 2,000,000
1,000 | 0.0021s 2,000,000 | TIMEOUT 0 1.1653s 2,000,000
10,000 | 0.0197s 2,000,000 | TIMEOUT 0 1.1304s 23,741
100,000 | 0.1942s 2,000,000 | TIMEOUT 0 0.8155s 16,511

TABLE 2: Average runtimes (in seconds) for Hermes (ours),
MMBEF, and BF across different token set sizes. The “Com-
pleted” column indicates the number of queries finished
within the timeout; “TIMEOUT” denotes that all queries
exceeded the time limit.

Each query was subject to a 12-second timeout, matching
the average Ethereum block interval.

Treewidth. Experimental analysis shows that the average
treewidth for token sets of sizes 100, 1,000, 10,000, and
100,000 is 8, 18, 38, and 71, respectively. As illustrated
in Figure [2| while treewidth increases with the number of
tokens, its growth rate is substantially slower than that of
the total number of tokens. These results demonstrate the
suitability of parameterized algorithms for this problem.

Dynamics of Pool Updates. For the token set sizes studied,
we observed an average of 9.7 price updates per block,
about 1 new token every 12 blocks, and about 1 new pool
every 33 blocks, reflecting few edge weight changes and
infrequent additions of vertices and edges. Figure |3| shows
the distribution of price updates across blocks. These results
show that the proposed approach for handling dynamic
edges is practical for real-world pools.

Robustness. We measured the success rate of Hermes
in finding valid routes, compared to MMBF and BF, by
running 2,000,000 queries for each of the four token set
sizes. Hermes successfully solved 100% of queries, while
MMBF and BF solved only 25% and 1.4%, respectively.
The primary limitation for MMBF was frequent timeouts
when the token count exceeded 100. For BF, failures on
smaller token sets 100, 1,000 were mainly due to negative
cycles, while timeouts dominated for larger sets 10,000 and
100,000. Table [I| summarizes the success rates and coverage
for all three algorithms.

Scalability. We evaluated the runtime performance of all
algorithms. MMBF completed within the time limit only for
the smallest token set of 100, which precludes direct runtime
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Figure 2: Comparison of the growth rates of the number of
tokens and the treewidth.
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Figure 3: Histogram of token price updates per block.

comparison on larger sizes. On this benchmark, Hermes
achieved an average query time of 0.0002 seconds, while
MMBEF required 2.8191 seconds, representing an improve-
ment of four orders of magnitude. BF completed within the
time limit for token sets of size 100 and 1,000 mainly. For
queries solved by both Hermes and BF, Hermes averaged
0.054 seconds per query, compared to 0.5947 seconds for
BF. It is important to note that BF frequently failed to return
valid routes on 97.8% of queries owing to the presence of
negative cycles, which rendered the majority of its results
unusable. Hermes was the only method able to process
the largest token sets, with average query times of 0.0197
seconds and 0.1942 seconds for 10,000 and 100,000 tokens,
respectively. Detailed results are presented in Table



6. Discussion and Future Work

Broader Adoption. Similar to other graph-based routing
algorithms that have been widely applied for arbitrage de-
tection, our method has the potential to identify negative
cycles within its steps. In particular, because it efficiently
processes large sets of tokens, it opens opportunities for
future research to evaluate the potential profitability of ar-
bitrage opportunities in large-scale token graphs.

Impact of Slippage. Slippage arises when the execution
price of a trade differs from the spot price, often as a result
of market volatility or limited liquidity. Previous studies
indicate that slippage can influence trading outcomes, partic-
ularly for large trades [3]. Since our algorithm relies on spot
prices, similar to prior research, it encounters comparable
limitations for high-volume trades. Thus, this approach can
benefit from preprocessing steps such as imposing additional
restrictions on liquidity for a given set of pools.

Transaction Costs and Trade Efficiency. Executing trades
incurs transaction fees, which increase as the route includes
more steps. To adjust for this, one can increase the edge
prices by an upper bound estimate that reflects the cost of
a single trade. Previous works have estimated such upper
bounds for smart contract functions, and incorporating these
estimates can prevent infeasible routes [22].

7. Conclusion

This paper presents an extension of a treewidth-based
algorithm for optimal routing on DEXs. By leveraging the
structural properties of liquidity pools, the proposed ap-
proach bridges the gap between scalability and robustness.
To our knowledge, this is the first application of parameter-
ized algorithms in the context of DEXs. We implemented
the algorithm in a tool named Hermes and demonstrated
its effectiveness through extensive experiments. Notably,
Hermes is the only available tool that efficiently manages
large token sets, as found in real-world DEXs.
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