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Abstract—Graph Spectral Sparsification (GSS) identifies an
ultra-sparse subgraph, or sparsifier, whose Laplacian matrix
closely approximates the spectral properties of the original graph,
enabling substantial reductions in computational complexity for
computationally intensive problems in scientific computing. The
state-of-the-art method for efficient GSS is feGRASS, consisting of
two steps: 1) spanning tree generation and 2) off-tree edge recovery.
However, feGRASS suffers from two main issues: 1) difficulties in
parallelizing the recovery step for strict data dependencies, and
2) performance degradation on skewed inputs, often requiring
multiple passes to recover sufficient edges.

To address these challenges, we propose parallel density-aware
Graph Spectral Sparsification (pdGRASS), a parallel algorithm that
organizes edges into disjoint subtasks without data dependencies
between them, enabling efficient parallelization and sufficient
edge recovery in a single pass. We empirically evaluate feGRASS
and pdGRASS based on 1) off-tree edge-recovery runtime and
2) sparsifier quality, measured by the iteration count required
for convergence in a preconditioned conjugate gradient (PCG)
application. The evaluation demonstrates that, depending on the
number of edges recovered, pdGRASS achieves average speedups
ranging from 3.9× to 8.8×. The resulting sparsifiers also show
between 1.2× higher and 1.8× lower PCG iteration counts, with
further improvements as more edges are recovered. Additionally,
pdGRASS mitigates the worst-case runtimes of feGRASS with over
1000× speedup. These results highlight pdGRASS’s significant
improvements in scalability and performance for the graph
spectral sparsification problem.

Index Terms—graph sparsification, parallel subtask division

I. INTRODUCTION

Graph spectral sparsification (GSS) aims to construct a
sparsifier, which is a nearly-linear-sized subgraph that can
approximate the spectral information (i.e., eigenvalues and
eigenvectors) of the original graph. Researchers have in-
vestigated this problem in both theory [1]–[4] and practice
[5]–[10]. Using the sparsifier rather than the original graph
facilitates near-linear-time algorithms for a wide variety of
computationally-intensive matrix and graph applications such as
scientific computing [4], max-flow problems in graphs [4], [11]–
[13], data mining [14], social network analysis [15], solving
large systems of equations [16], machine learning [17], and
computer-aided design (CAD) for very large-scale integration
(VLSI) [5], [18]. Due to the heavy computational complexity

of these applications, graph sparsification is necessary to solve
large-scale problems in a reasonable timeframe. Unfortunately,
most existing implementations of algorithms for GSS are
sequential and stop short of parallelization.

Edge recovery in sparsification. The state-of-the-art method
for GSS is feGRASS [7] and pGRASS [19] (a parallel
implementation of feGRASS but not open-sourced), which
performs two key steps: 1) spanning-tree generation and 2)
recovering “dissimilar” spectrally-critical off-tree edges that
were not chosen in the first phase but are necessary for
improving the approximation quality. The main challenge in
designing parallel algorithms for GSS is the off-tree edge
recovery phase, as spanning-tree generation has well-known
optimized solutions.

Challenges to parallelization from data dependencies. An
off-tree edge can be recovered only if it is not similar to
all previous recovered edges. In other words, each itera-
tion is inherently dependent on the results of the previous
iterations, imposing a sequential constraint on the overall
process. The state-of-the-art parallel implementation for GSS
is pGRASS [19], [20], which parallelizes over edges in batches
but incurs excess work. Edges in the same batch can be similar
edges. Specifically, if there are p threads, pGRASS performs
similarity check on the next p edges simultaneously while there
can be redundant computation, which is unavoidable for the
correctness of the parallel algorithm.

Since there is no available implementation for pGRASS, we
compare our algorithm directly with feGRASS.

Worst-case inputs. The off-tree edge recovery phase only stops
when the algorithm recovers a fixed number of edges of α|V |,
where α is a predefined ratio that specifies the proportion of
edges to be recovered (default value is 2%) and |V | is the
number of vertices. For a small α such as 0.01, one pass
through the off-tree edges is sufficient to recover enough edges,
but when α is set to a moderately larger value, such as 0.05,
the feGRASS strategy may require many passes through the
off-tree edges to recover enough edges to meet the required
threshold. In an extreme case, on the com-Youtube graph in



Fig. 1: Relative off-tree-edge recovery time and PCG iteration
count (feGRASS/ pdGRASS) for 18 test graphs. A number
above 1 in either metric means that pdGRASS improves along
that metric compared to feGRASS.

part V, we found that feGRASS requires over 6000 passes to
recover 0.02|V | edges. It reveals that algorithm based on vertex
cover degrades severely on certain special graph structures.

Density-aware graph spectral sparsification. To address these
issues, we propose parallel density-aware Graph Spectral Spar-
sification (pdGRASS), a fast and accurate parallel algorithm
for GSS. Like feGRASS and pGRASS, pdGRASS follows a
two-step framework but introduces two key modifications: 1)
changing the edge-similarity condition to a “strict” condition
to recover more edges in one pass for various graph structures,
which gives rise to 2) a careful parallelization strategy based on
division of the entire problem into independent “subtasks”. The
proposed subtask-level parallelization significantly reduces the
data dependencies between edges in feGRASS and pGRASS
through subtask partitioning. Furthermore, we find that the
strict condition enables pdGRASS to complete recovery in a
single pass by retaining more edges.

Mixed parallel strategy. We empirically evaluate several
parallelization strategies for pdGRASS and propose a mixed ap-
proach that exploits parallelism both within and across subtasks.
This is necessary because real-world graphs, characterized by a
few high-degree and many low-degree vertices, lead to skewed
subtask sizes. Parallelizing only along one dimension would
leave performance on the table and unnecessarily serialize the
computation. Meanwhile, a mixed parallel strategy can adapt
the ratio of the two parallel strategies based on the number of
available cores, achieving better speedup.

Results summary. We evaluate the state-of-the-art serial
algorithm feGRASS1 [7] and the proposed pdGRASS based
on: 1) their off-tree edge recovery runtime, and 2) the iteration
count required for convergence in a downstream preconditioned
conjugate gradient (PCG) [21] solver. Figure 1 summarizes the
results in terms of runtime and PCG iteration count on a suite
of 18 input graphs. As α increases and more edges are required

1We compare with feGRASS because no open-source implementation of
pGRASS is available.

to be recovered, the data points collectively shift toward the
upper right direction, reflecting consistent improvements of
pdGRASS over feGRASS in both run-time efficiency and
sparsifier quality as shown in Figure 1. Finally, as detailed
in Section V, pdGRASS achieves strong parallel scaling on
both uniform and skewed inputs, enabled by its mixed parallel
strategy across and within subtasks. On 32 threads, pdGRASS
attains an average parallel speedup of 11.3× for α = 0.02,
and further improves to 13.7× and 14.8× for 0.05 and 0.10.

II. PRELIMINARIES

This section presents background and current algorithms for
graph spectral sparsification problem. We introduce key con-
cepts such as the graph Laplacian matrix and then review with
the efficient serial algorithm feGRASS [7] and pGRASS [19].

A. Graph Spectral Sparsification

The Graph Spectral Sparsification (GSS) problem takes
a weighted undirected graph G = (V,E,w) as input and
generates an ultra-sparse subgraph (also called a sparsifier) P
as output which is “spectrally similar” to the original graph G.

We first define the Laplacian matrix of a graph G, denoted
by LG ∈ R|V |×|V |.

LG(i, j) =


−wi,j , (i, j) ∈ E∑
(i,k)∈E

wi,k, i = j

0, otherwise.

(1)

A graph P is σ-spectrally similar to a graph G if for any
u ∈ R|V |,

1

σ
uTLPu ≤ uTLGu ≤ σuTLPu (2)

where LG and LP are the Laplacian matrices of graphs G
and P , respectively [22]. If graphs G and P are σ-spectrally
similar, then κ(LG, LP ) ≤ σ2, where κ(LG, LP ) denotes the
relative condition number2 of their Laplacian matrices.

B. feGRASS Algorithm [7]

feGRASS is an efficient serial algorithm for GSS, which
consists of two main steps: 1) spanning-tree generation based
on the Effective Weight of edges and 2) off-tree edge recovery
based on the Resistance Distance of paths in the spanning tree.

Definition 1 (Effective weight). The effective weight [7] Weff

of an edge e = (i, j) is defined as follows:

Weff(e) = wu,v ×
log(max{deg(u),deg(v)})

distG(root, u) + distG(root, v)
(3)

where G denotes the original graph and root is the vertex
with the maximum degree in G and distG(·) refers unweighted
distance, which can be computed by Breadth-First Search(BFS).

2The condition number of two matrices A and B is defined as κ(A,B) =
λmax(A,B)/λmin(A,B) where λmax and λmin denote the largest and smallest
nonzero generalized eigenvalues, respectively.



Fig. 2: An illustration of the similarity check for a recovered
off-tree edge e = (3, 6) with BFS step size β = 1. The blue
vertices represent S6 and yellow vertices represent S3.

Definition 2 (Resistance distance). Given a spanning tree T ,
the resistance distance RT (paraphrased3 from [7]) of an edge
e = (u, v) is defined as

RT (u, v) = distre(u,LCAT (u, v)) + distre(v,LCAT (u, v)),
(4)

where distre is distance of u, v based on resistant weight Wre

and Wre(e) = 1/w(e).

After spanning-tree generation, each edge in the original
graph belongs to either the tree edge set and off-tree edge set.
The next step is off-tree edge recovery based on the concept
of “resistance distance” from the theory of electrical resistance
networks [3], [24] which determines spectrally criticality.

Intuitively, two off-tree edges are “similar” if they have
“similar positions on the spanning tree”. Formally, similarity
is determined by vertex neighborhoods of the endpoints of an
off-tree edge, which can be computed with BFS process.

Definition 3 (BFS step size and vertex neighborhoods). Let
e = (u, v) be a recovered off-tree edge and let T be the
spanning tree from the first step. The corresponding BFS step
size β is defined as a small constant c (default value is 8) in
the feGRASS algorithm and let Su,β (resp., Sv,β) be the β-hop
neighborhood of vertex u (resp., vertex v). That is, Su,β is a
set containing all vertices with distance at most β from u (i.e.,
all vertices visited in β BFS iterations from u):

Su,β = {v : dist(u, v) ≤ β, β = c} (5)

Definition 4 (Similiar edge (Loose Definition)). Suppose we
have a spanning tree T , an off-tree edge e = (u, v), and
BFS step size β and get two β-hop vertex neighborhood sets
Su,β , Sv,β .

An off-tree edge e′ = (u′, v′) is similar to off-tree edge e if

(u′ ∈ Su,β ∨ v′ ∈ Sv,β) ∨ (u′ ∈ Sv,β ∨ v′ ∈ Su,β). (6)

The process of recovering similar edges can be interpreted
as a Vertex Cover problem and we can derive an equivalent
formulation of the condition 6 stated above as follows.

(u′ ∈ Su,β ∪ Sv,β) ∨ (v′ ∈ Su,β∪ ∈ Sv,β). (7)

3In the original pGRASS [19], [20] paper, the algorithm partitions the
spanning tree so it can run Tarjan’s offline least common ancestor (LCA)
algorithm [23]. In this paper, we dynamically compute the LCA, so we do
not need to partition the spanning tree.

The size of the resulting subgraph in the feGRASS algorithm
is constrained by the input parameter α, determining the number
of recovered edges as α|V |. The generated subgraph contains
|V | − 1 + α|V | edges in total. If feGRASS fails to recover
α|V | edges after one pass, the algorithm will repeat the off-
tree-edge recovery process on the remaining off-tree edges
until it recovers α|V | edges.

C. Parallelizing the feGRASS Algorithm

Subsequent work introduced pGRASS [19], a parallel
algorithm based on feGRASS, which focuses on parallelizing
the off-tree edge recovery step because the other steps have
standard parallel solutions. First, the algorithm computes the
effective resistance of every edge in the original graph using
the spanning tree, which can be parallelized using divide-and-
conquer to divide the spanning tree into subtrees [19] and
applying Tarjan’s offline LCA algorithm [23].

At a high level, pGRASS parallelizes the seemingly-
sequential edge-similarity checks by dividing the off-tree edges
upfront into sequential blocks such that parallel threads process
edges within each block in parallel. Note that the algorithm
may perform excess work because it may process edges that
are similar to earlier edges in the block in parallel. After all
edges in a block have been processed, pGRASS performs a
serial pass through all edges in the block to check whether
they should truly be recovered, or if they should have been
skipped due to parallel edges within the same block.

D. Analysis method

In this paper, we analyze parallel algorithms in the work-
span model [25, Chapter 27]. The work is the total time to
execute the entire algorithm in serial. The span is the longest
serial chain of dependencies in the computation. In the work-
span model with binary forking, a parallel for loop with k
iterations with O(wi) work and O(Si) span in the i-th iteration

has O(
k∑

i=0

wi) work and O(log(k) +
k

max
i=0

Si) span.

III. PARALLEL DENSITY-AWARE GRAPH SPECTRAL
SPARSIFICATION

This section proposes parallel density-aware Graph Spectral
Sparsification (pdGRASS), an efficient algorithm for GSS that
resolves the drawbacks of feGRASS: 1) loose approximation
and 2) redundant work during parallelization. The pdGRASS al-
gorithm modifies the off-tree edge recovery phase to restrict the
similarity condition to recover more off-tree edges within one
pass, and parallelize disjoint subproblems that avoid redundant
work due to data dependencies as described in Section II.

A. Density-Aware Approximation Condition

The density-aware approximation restricts the similarity
condition in Definition 4 to require that both endpoints of
potentially similar edges be contained in the separate β-hop
neighborhoods of the original edge endpoints rather than



Fig. 3: An illustration of the similarity check under the loose
and strict similarity conditions. In this example, the edge being
checked against is e = (3, 6), LCAT (3, 6) = 1, and β = 1. The
yellow (resp., blue) vertices denote Su=3,β=1 (resp., Sv=6,β=1).
The arrow on the off-tree edges denotes whether the edge is
loosely similar to e (left of the arrow) and then whether the
edge is strictly similar to e (right of the arrow).

either endpoint. We further introduce a new definition for
the parameter β as follows.

β∗
u,v = min{dist(u,LCA(u, v)), dist(v,LCA(u, v)), c} (8)

More formally, the density-aware condition replaces the OR
condition with AND condition in the endpoint membership.

Definition 5 (Similiar edge (Strict)). Suppose we have a
spanning tree T , an off-tree edge e = (u, v), and BFS step
size β∗

u,v and the β∗-hop vertex sets Su,β∗ , Sv,β∗ . An off-tree
edge e′ = (u′, v′) is strictly similar to off-tree edge e if

(u′ ∈ Su,β∗ ∧∧∧ v′ ∈ Sv,β∗) ∨ (u′ ∈ Sv,β∗ ∧∧∧ v′ ∈ Su,β∗). (9)

To clearly delineate between the two conditions going
forward, we will use the term loosely similar to refer to the
similarity definition in feGRASS and pGRASS (Definition 4).
Figure 3 presents a worked example of edge similarity under
the previous loose condition and the proposed strict condition.

Under strict similarity conditions, only two edges with
highly similar positions are considered similar, which enables
pdGRASS to recover a sufficient number of edges in a single
recovery pass. In contrast, feGRASS, which is based on vertex
cover, tends to meet the similarity condition more easily, and
thus can only recover a small number of edges in each pass.
In extreme cases, feGRASS may recover only one edge per
round. More specifically, if the constant β is greater than or
equal to the diameter of the spanning tree, then recovering any
single edge can cover the entire graph.

Properties of strictly-similar edges. Next, we show how the
strict edge-similarity condition in Definition 5 give rise to
disjoint subproblems without redundant work. The full version
of the paper will contain the proofs.

Lemma 6 (Strictly similar edges share their LCA). If off-tree
edge e′ = (u′, v′) is strictly similar to off-tree edge e = (u, v),
on a spanning tree T , then LCA(u, v) = LCA(u′, v′).

Lemma 7 (Contraposition). Given two off-tree edges e =
(u, v), e′ = (u′, v′) and a spanning tree T , if LCA(u, v) ̸=
LCA(u′, v′), then e′ cannot be strictly similar to e.

Lemma 8 (Strict similarity is non-commutative). Given a
spanning tree T , let e = (u, v) and e′ = (u′, v′) be two
strictly similar off-tree edges determined by first recovering e,
performing BFS from u and v to get β-hop neighborhoods, and
applying the strict similarity condition. If edge e′ was recovered
first, edge e may not have been marked strictly similar to e′.

Lemma 6 proves that two strictly similar off-tree edges
must share a LCA on spanning tree, which forms the basis for
dividing all off-tree edges into groups based on their LCA. Then
Lemma 7 (contraposition of Lemma 6) forms the basis for
dividing the off-tree edges into disjoint subtasks in pdGRASS
based on the LCA of their endpoints. If the LCAs of the
endpoints of two edges do not match, they cannot possibly be
strictly similar, so we can skip their similarity check. Therefore,
pdGRASS groups off-tree edges based on the LCA of their
endpoints. Only edges within a group need to be checked,
because edges cannot be strictly similar across groups.

Lemma 8 shows that the edges in the subtasks must be
processed in sorted order because strict similarity is non-
commutative. In other words, any parallelization within a
subtask must process edges in order. According to its definition
in Equation 8, β is further constrained by the minimum between
a shorter distance and a predefined constant c, so the final value
of β is no greater than the one used in the theoretical proof.
Hence, the introduction of the constant c does not affect the
validity of the previously established properties.

Due to space limitations, we sketch some of the proofs in
this section, but will include all proofs in the full version.

IV. PARALLELIZING PDGRASS

This section will 1) show how the properties in Section III
give rise to disjoint subtasks and 2) discuss several paralleliza-
tion strategies of the subtasks depending on their size. Then
we analyze the work and span of the proposed pdGRASS
algorithm using the analysis model from Section II.

A. Parallelization Strategies

First, we propose several subtask parallelization strategies
based on the data dependencies shown in Lemmas 7 and 8
and distribution of the size of the subtasks.

Outer parallelization. The most straightforward parallelization
method is outer parallelization, or parallelization across the
subtasks. By Lemma 7, all of these subtasks can be processed
independently because there are no strictly similar edges across
subtasks. The similarity checks are embarassingly parallel
across subtasks, so there is no need for additional complexity.

Inner parallelization. If some subtasks are much larger than
others, which is likely due to the skewed nature of graphs,
inter-task parallelization alone may not be sufficient to achieve
good parallel speedup. Therefore, we can also perform inner
parallelization within tasks using the same blocked method
as pGRASS described in Section II. In the initial pGRASS
parallelization method, the list of off-tree edges is divided
into blocks upfront, and edges in each block are processed



in parallel, but the blocks themselves are serialized. Some of
the edges in a block may have been marked during a previous
block, so the amount of edges that need to be processed in
subsequent blocks depends on previous blocks.

During each edge recovery, the algorithm first checks whether
the current edge has already been marked. If so, it enters
the continue branch and skips further processing. When a
set of edges is processed in parallel, threads that enter the
continue branch may lead to execution bubbles. We propose
an optimization method, Judge-before-Parallel, that extracts
the if-condition checks outside the parallel region, thereby
eliminating conditional branching and ensuring full thread
utilization without idle threads.

Heuristic-based mixed parallel strategy. In pdGRASS, we
always apply outer-task parallelism across the independent
subtasks, but use heuristics to determine whether to apply
inner-task parallelism in a given subtask based on whether
the subtasks is sufficiently large (i.e., it has many edges or
covers over 10% of total edges). We found that in practice,
applying inner-task parallelism in subtasks with at least 1E5
edges resulted in good parallel speedup. Outer parallelism may
encounter issues with uneven thread load. When a very large
subtask is assigned to a particular thread, that thread may still
be executing even after all other subtasks have finished, which
results in a decline in overall performance. Therefore, we need
to apply an inner parallel strategy for such large tasks.

B. Algorithm Description and Analysis

Finally, we describe pdGRASS and analyze its work and
span in the binary-forking model described in Section II. The
full version will contain the proofs.

At a high level, pdGRASS applies the strict edge-similarity
condition and divides the edges into disjoint subtasks according
to the LCA of their endpoints. From Lemma 6, if two edges are
not strictly similar, they have different LCAs. Edges must be
processed sequentially within a subtask, according to Lemma 8,
but pdGRASS can apply inner parallel strategy of dividing the
edges into blocks, as described in Section II.

There are four main steps in pdGRASS: 1) computing the
resistance distance for each off-tree edge, 2) sorting the off-tree
edges by their resistance distance, 3) creating subtasks based
on shared LCAs and sorting them based on their size, and 4)
recovering edges via the strict edge-similarity condition within
mixed parallel strategy on subtasks. Table I summarizes the
work and span bounds for each of these steps.

V. EVALUATION

This section empirically evaluates pdGRASS compared to
feGRASS in terms of their 1) recovery runtime and 2) sparsifier
quality, in terms of the iteration count required for convergence
when using the sparsifier in a downstream application of
preconditioned conjugate gradient (PCG) [21]. Then we
evaluate the strong scaling of pdGRASS on representative

Step Work Span
1 O(|E| lg |V |)) O(lg2 |V |)
2 O(|E| lg |E|) O(lg2 |E|)
3 O(|E| lg |E|) O(lg2 |E|)

4 O(
k∑

i=0
|Si|2) O(|So|2/p+ |Sserial|2)

Total O(|E| lg |E|+
k∑

i=0
|Si|2) O(lg2 |E|+ |So|2/p+ |Sserial|2)

p: number of parallel threads. k: number of subtasks.
Si: set of edges in i-th subtask. Sserial: the largest sequential subtask.

TABLE I: Work-Span analysis of each step in pdGRASS.

cases of skewed and uniform subtask distributions to evaluate
the impact of different parallelization strategies. Experiments
show that the mixed parallel strategy consistently achieves
effective parallel scaling across diverse data distributions.

Setup. We performed experiments on an Rocky Linux (8.9,
Green Obsidian) server with AMD EPYC 7T83 64-Core
Processor. Each core has 32 KB L1d/L1i and 512 KB L2
caches, with a 32 MB L3 cache shared per socket. We
implemented pdGRASS in C++17 with OpenMP 4.5 [26]
and compiled by GCC 8.5.0. We compare with the open-
source4 implementation of feGRASS. To do an apples-to-apples
comparison of the recovery step, pdGRASS uses the same
spanning tree as feGRASS. We report the minimum runtime
over 5 trials of the edge recovery step.

The parameter α defines the ratio of edges to be recovered.
We evaluate feGRASS and pdGRASS with α set to 0.02, 0.05,
and 0.10 to assess performance across different recovery ratios.

We measure sparsifier quality by the iteration count required
for convergence in a PCG solver from MATLAB R2023b
to evaluate GSS performance. Specifically, given a subgraph
P of the original graph G, the PCG solver uses LP as the
preconditioner to solve ||LGx− b|| ≤ 10−3||b|| iteratively. A
lower iteration count indicates a higher-quality sparsifier.

Datasets. We evaluate the algorithms on a suite of 18 graphs
from the SuiteSparse Matrix Collection [27], including datasets
from SNAP [28] and DIMACS10 [29]. We select symmetric
matrices representing undirected graphs with a single connected
component. For graphs without edge weights, we assign random
positive weights uniformly sampled between 1 and 10. Table II
summarizes the graph sizes.

pdGRASS parameters. Given p threads, we set the block
size (as defined in Section II) to p, enabling p edges to be
processed in parallel. This design follows the Judge-Before-
Parallel optimization to maximize thread occupancy. pdGRASS
first handles large tasks using inner parallelism in a one-
by-one manner and then applies outer parallelism to the
remaining tasks. The cutoff between inner and outer is defined
as 1E5, or 10% of the total off-tree edges, effectively isolating
larger subtasks for improved performance. As for α, we
choose 0.02, 0.05, 0.10 and report the results in Table II. The
default in previous work [7] is α = 0.02, but we show that
pdGRASS with increasing α can efficiently compute higher-
quality subgraphs than with smaller α.

4https://github.com/5Mrzhao/CSP/blob/main/Sfegrass.cpp



α = 0.02 α = 0.05 α = 0.10

Graph |V | |E| Tfe Pass iterfe Tpd−32 iterpd
iterfe

iterpd
Tfe Pass iterfe Tpd−32 iterpd

iterfe

iterpd
Tfe(ms) pass iterfe Tpd−32 iterpd

iterfe

iterpd

01-mi2010 3.30E5 7.89E5 82 1 83 3 93 0.9 116 3 66 6 35 1.9 180 6 57 12 24 2.4
02-mo2010 3.44E5 8.28E5 88 1 84 4 93 0.9 130 3 65 6 34 1.9 202 6 57 13 25 2.3
03-oh2010 3.65E5 8.84E5 92 1 81 3 92 0.9 134 3 65 8 34 1.9 210 6 53 16 25 2.1
04-pa2010 4.22E5 1.03E6 81 1 83 7 93 0.9 117 3 66 11 34 1.9 182 6 58 20 25 2.3
05-il2010 4.52E5 1.08E6 115 1 81 11 99 0.8 170 3 68 13 56 1.2 270 5 55 24 26 2.1
06-tx2010 9.14E5 2.23E6 276 1 87 24 97 0.9 471 3 72 47 34 2.1 836 6 39 96 27 1.4
07-com-DBLP 3.17E5 1.05E6 252 2 134 118 135 1.0 475 6 131 385 121 1.1 897 14 124 1139 105 1.2
08-com-Amazon 3.35E5 9.26E5 130 2 72 128 82 0.9 208 4 61 347 60 1.0 334 7 54 635 49 1.1
09-com-Youtube∗ 1.13E6 2.99E6 - 6931 199 1353 190 1.0 - 38308 224 8544 127 1.8 - 103081 161 23062 93 1.7
10-coAuthorsCiteseer 2.27E5 8.14E5 192 2 175 53 111 1.6 341 5 160 160 101 1.6 582 10 128 387 93 1.4
11-citationsCiteseer 2.68E5 1.16E6 514 4 131 115 126 1.0 1245 15 94 338 113 0.9 3021 52 104 791 70 1.5
12-coAuthorsDBLP 2.99E5 9.78E5 248 3 86 105 89 1.0 477 6 83 342 74 1.1 883 14 80 889 62 1.3
13-coPapersDBLP 5.40E5 1.52E7 10770 2 200 105 234 0.9 22813 6 206 420 215 1.0 42865 13 202 3703 192 1.1
14-NACA0015 1.04E6 3.11E6 352 1 98 26 234 0.4 519 2 83 49 85 1.0 834 4 66 92 30 2.2
15-M6 3.50E6 1.05E7 1500 1 105 164 106 1.0 2192 2 89 372 91 1.0 3520 4 66 786 31 2.1
16-333SP 3.71E6 1.11E7 1550 1 107 222 187 0.6 2218 2 88 419 85 1.0 3489 4 69 865 30 2.3
17-AS365 3.80E6 1.14E7 1629 1 105 242 182 0.6 2390 2 87 437 91 1.0 3863 4 70 906 30 2.3
18-NLR 4.16E6 1.25E7 1818 1 108 221 193 0.6 2674 2 89 502 90 1.0 4256 4 71 1052 30 2.4
∗Time out for feGRASS on graph com-Youtube, for α = 0.02, 0.05, feGRASS runs over 10 minutes; for α = 0.10, feGRASS runs over 1 hour.

TABLE II: Evaluation of runtime and subgraph quality. Tfe (ms) and Tpd−32 (ms) represent the execution times of feGRASS
and pdGRASS (with 32 threads), respectively. Pass represents the number of passes required by feGRASS to restore a sufficient
number of edges. The Pass for pdGRASS is omitted because it always completes in one single pass. iterfe and iterpd
represents the number of iterations for the PCG solver to converge when using the generated sparsifier as the preconditioner.

Runtime. On 32 threads, pdGRASS shows a significant runtime
advantage over feGRASS. Excluding the com-youtube dataset
due to a timeout, pdGRASS achieves average speedups of
8.76×, 6.32×, and 3.94× over feGRASS under 32-thread
execution, for α = 0.02, 0.05, and 0.10, respectively. These
results align with our algorithmic analysis: as α increases and
more edges are recovered, the problem size grows, causing the
runtime of pdGRASS with single thread to increase faster than
that of feGRASS due to its inherently quadratic complexity,
whereas feGRASS operates in linear time.

As discussed in Section I, pdGRASS addresses the worst-
case runtimes encountered by feGRASS on challenging inputs.
Although feGRASS has lower theoretical complexity, its vertex-
cover-based loose similarity condition leads to many edges
being marked as similar, often requiring multiple passes to meet
recovery targets. com-Youtube, a highly skewed graph where a
few high-degree vertices connect to many others, exemplifies
this issue. Once a high-degree vertex is covered, nearly all
incident edges are marked as similar, severely limiting the
number of edges recoverable per pass. Even with α = 0.02,
feGRASS requires over 6000 passes to recover enough edges.
While each pass runs in linear time, the cumulative overhead
results in significant performance degradation. Excluding com-
youtube, feGRASS still requires an average of 1.6, 4.1, and
9.7 passes to recover 2%, 5%, and 10% of edges, respectively.
In contrast, pdGRASS ’s stricter similarity condition allows
substantially more edges to be recovered per pass.

Quality. As shown in Table II, pdGRASS yields lower PCG
iteration counts than feGRASS on most datasets as α increases,
indicating improved subgraph quality. The iteration ratio
between feGRASS and pdGRASS rises from 0.9× at α = 0.02
to 1.3× at α = 0.05, and 1.8× at α = 0.10, suggesting
that pdGRASS benefits more from increased edge recovery.
At α = 0.10, pdGRASS consistently achieves convergence
with roughly half the PCG iterations required by feGRASS.
Although α = 0.02 is commonly used in feGRASS as a

heuristic to balance quality and runtime, pdGRASS ’s higher
efficiency enables the use of larger α values to produce higher-
quality subgraphs without significant overhead.

The strict similarity condition in pdGRASS allows more
spectrally critical edges to be recovered, leading to higher-
quality subgraphs. In contrast, feGRASS employs a looser
condition, which often causes some spectrally important edges
to be marked as similar and excluded from recovery once their
endpoints are covered.

Strong Scalability. We conducted a comparison between
feGRASS and pdGRASS by evaluating their performance ratios
on 1, 8, and 32 threads. As the number of threads increases to
32, pdGRASS consistently surpasses feGRASS in performance
across all datasets, with an average speedup of 8.8×. Notably,
pdGRASS delivers over 20× speedup on 5 out of 18 tested
datasets. Furthermore, pdGRASS scales efficiently, achieving
an average speedup of 5.8× on 8 threads and 11.3× on 32
threads. On skewed inputs, the inner parallel region dominates
execution time due to extreme load imbalance, while the outer
region contributes minimally and quickly saturates in speedup.
A mixed parallel strategy is essential in this case to balance
the workload and improve scalability. On more uniform inputs,
even task distribution enables efficient parallelism, resulting in
near-ideal strong scaling across threads. More detailed tables
will be included in the full version.

VI. CONCLUSION

We present pdGRASS, an efficient parallel Graph Spectral
Sparsification (GSS) algorithm generating density-aware sub-
graphs. pdGRASS improves the state-of-the-art feGRASS by
1) restricting edge-similarity conditions to recover more edges
per pass, and 2) parallelizing over the resulting independent
subtasks. Additional technical details and extended results are
provided in the full version of this paper.5

5The full version is available at https://arxiv.org/abs/2508.20403.

https://arxiv.org/abs/2508.20403
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“Resistance-distance matrix: a computational algorithm and its application,”
International Journal of Quantum Chemistry, vol. 90, no. 1, pp. 166–176,
2002.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[26] OpenMP Architecture Review Board, “OpenMP application program
interface version 4.5,” May 2008. [Online]. Available: https:
//www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[27] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, Dec 2011.

[28] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[29] D. A. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and
D. Wagner, Benchmarking for Graph Clustering and Partitioning. In
Encyclopedia of Social Network Analysis and Mining. Springer, 2014.

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://snap.stanford.edu/data

	Introduction
	Preliminaries
	Graph Spectral Sparsification
	feGRASS Algorithm liu2021fegrass
	Parallelizing the feGRASS Algorithm
	Analysis method

	Parallel Density-Aware Graph Spectral Sparsification
	Density-Aware Approximation Condition

	Parallelizing pdGRASS
	Parallelization Strategies
	Algorithm Description and Analysis

	Evaluation
	Conclusion
	References

