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Abstract

Profile-guided optimization (PGO) advances the frontiers of compiler optimization
by leveraging dynamic runtime information to generate highly optimized binaries.
Traditional instrumentation-based profiling collects accurate profile data but often
suffers from heavy runtime overhead. In contrast, sampling-based profiling is
more efficient and scalable when collecting profile data while avoiding intrusive
source code modifications. However, accurately collecting execution profiles
via sampling remains challenging, especially when applied to fully optimized
binaries. Such inaccurate profile data can restrict the benefits of PGO. This paper
presents PROFIX, a machine learning-guided approach based on hybrid GNN
architecture that addresses the problem of profile inference, aiming to correct
inaccuracies in the profiles collected by sampling. Experiments on the SPEC
2017 benchmarks demonstrate that PROFIX achieves up to a 9.15% performance
improvement compared to the state-of-the-art traditional algorithm and an average
6.26% improvement over the baseline machine learning models. These results
highlight the effectiveness of PROFIX in optimizing real-world application profiles.

1 Introduction

Table 1: High-level comparison of S Sampling-
based and I Instrumentation-based PGO. Advan-
tages are highlighted and annotated with check-
marks. Sampling-based PGO offers high perfor-
mance with low overhead, without requiring intru-
sive modifications of code, making it well-suited
for scalable deployment, but is limited in accuracy.

Type Efficiency Non-Intrusive Scalable Accuracy

S ✓ ✓ ✓ ✗

I ✗ ✗ ✗ ✓

Compilers play a critical role in transforming
high-level source code into efficient machine-
level instructions. Beyond basic translation,
modern compilers employ numerous optimiza-
tion techniques to improve program perfor-
mance, reduce memory usage, and ensure faster
execution [33, 37, 47, 48]. Compiler optimiza-
tions, such as loop unrolling, function inlining,
and instruction scheduling, aim to exploit hard-
ware features effectively and improve overall
program efficiency [14, 17, 24, 46, 55]. Profile-
guided optimization (PGO) has emerged as a
powerful optimization technique for improving program performance by incorporating runtime exe-
cution profiles into the optimization pipeline of compilers [8, 18]. By identifying frequently executed
hot regions of code, PGO enables compilers to focus on optimizing the most frequently executed
parts of a program, thereby significantly enhancing performance [17, 21, 23].

PGO is practiced in two main flavors: instrumentation-based and sampling-based, which are summa-
rized in Table 1. Instrumentation-based PGO collects precise profile data by injecting counters and
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logging code during compilation, but incurs substantial runtime overhead, rendering it unsuitable for
production-scale applications [8, 21]. In contrast, sampling-based PGO [21, 40] leverages hardware
features such as the Last Branch Record (LBR) [54] from performance monitoring units (PMUs) [36]
to collect profile data with negligible overhead, and it does not require any intrusive modification
to program code. These characteristics make sampling-based PGO particularly well-suited for de-
ployment in latency-sensitive environments like data centers. Moreover, sampling-based profiles
are extensively used in binary-level and post-link optimization frameworks [41, 42]. Despite its low
overhead, the effectiveness of sampling-based PGO is fundamentally constrained by the accuracy of
the collected profiles. Noise, missing samples, and imprecise attribution of sampling-based profiles
can degrade optimization quality, ultimately resulting in suboptimal binary performance [20]. To this
end, previous work has proposed to use traditional network flow algorithms, such as minimum cost
flow formulation, to infer more accurate profiles [20, 62]. However, these techniques are unable to
produce faithful profiles from sampled data because they rely on hand-tuned heuristics rather than
learning program-specific patterns—they systematically under-estimate hot paths in sparse-sampled
code, leaving much of the potential of sampling-based PGO untapped.

Recent advances in machine learning (ML) have shown great promise in code generation and compiler
optimization [7, 27, 32, 35, 51, 60, 61]. ML models have been successfully applied to tasks such
as automatic tuning of compilation parameters [2, 9, 68] and reinforcement learning-based register
allocation [25, 59]. These successes highlight the potential of machine learning to automate and
enhance traditional compiler heuristics, paving the way for more adaptive and intelligent optimization
pipelines. Among recent ML techniques, graph neural networks (GNNs) [16] have been widely used
in compiler optimization [3, 5, 12] due to their ability to model structured program representations.
Programs are naturally formed by graphs, such as control-flow graphs (CFGs) and data-flow graphs
(DFGs) [1], which encode rich semantic and structural information. By operating directly on these
graph representations, GNNs can capture complex program behaviors and inform optimization
decisions more effectively and accurately than traditional feature-based models [49].

In this work, we take the first step toward applying GNNs, and even ML-based approaches, to address
the profile inference problem in the domain of compiler optimization. Our GNN-based model and
framework bridge the gap between low-fidelity sampled profiles and the high-quality profile data
required for effective sampling-based PGO. By learning to infer accurate execution frequencies from
noisy and incomplete samples, our method improves the reliability of PGO and enhances overall
compilation performance. The main contributions are summarized as follows:

• We propose a machine learning-guided approach to improve sampling-based profile-guided
optimization, introducing a novel graph neural network architecture specifically designed
for profile inference tasks.

• We develop PROFIX, an end-to-end framework that integrates a GNN-based profile inference
model into the LLVM infrastructure [30], enabling accurate profile reconstruction without
instrumentation, demonstrating its practicality and compatibility with real-world compilers.

• We conduct extensive experiments on widely used benchmark suites, showing that our
approach significantly improves profile inference accuracy over existing methods and yields
measurable performance gains in the optimized binaries.

The rest of the paper is organized as follows: Section 2 introduces the background of PGO and
reviews the related work, Section 3 presents our design of the model and the PROFIX framework,
Section 4 presents the experimental setup and results, and Section 5 concludes the paper.

2 Background and Related Work

Profile-Guided Optimization. Profile-guided optimization (PGO) improves code generation by
allowing the compiler to observe the dynamic behavior of the program and, informed by this feedback,
apply transformations such as aggressive inlining, basic block reordering, and loop unrolling, for
which static analysis alone often makes suboptimal decisions [17, 24, 39, 55]. Instrumentation-based
PGO embeds counters into the binary and therefore yields highly accurate profiles but intro-
duces heavy runtime overhead, rendering it impractical for latency-critical services [8, 18, 43].
Sampling-based PGO, instead, leverages hardware performance-monitoring units to collect events
with virtually no overhead, making it suitable for deployment at data-center scale [40]. However, sam-
pling inherently introduces stochastic noise [63,66] and sparsity into the collected profiles, which can
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Figure 1: Motivating example of the inaccuracies in sampling-based profiles. (a) The real execution
count of a control flow graph, branch frequency annotated in edge. (b) Expected sampled count given
the sampling rate of 1

10 . (c) We observe three key types of distortions. First, underestimation of BB2,
where the execution count is significantly lower than the ground truth due to insufficient sampling,
which may cause the compiler to deprioritize this basic block during optimization, ultimately resulting
in suboptimal performance. Second, overestimation in BB3 and BB5, where the sampled execution
counts are inflated compared to the ground truth. This can mislead the compiler into making incorrect
optimization decisions, such as prioritizing cold regions of the program for inlining, which may
increase binary size and degrade runtime performance. Finally, the issue of a dangling block [20]
arises with BB4, which has an execution count marked as unknown, indicating that it was not sampled
at all. This missing data prevents the compiler from accurately modeling control flow dependencies
and can result in misaligned basic block placements or incorrect branch predictions.

mislead the compiler during optimization [20]. Consequently, the central challenge becomes profile
inference, aiming at reconstructing a faithful execution profile from these incomplete, sample-driven
observations so that the compiler can reap the full benefit of low-overhead PGO.

Profile Inference Problem. Sampling-based profiles often suffer from inaccuracies, such as under-
estimation, overestimation, and missing execution counts, which are illustrated in Figure 1. Such
distortions stem from the probabilistic nature of hardware sampling and mislead PGO by providing
unreliable execution frequency signals. Traditional solutions to this problem use the Minimum-Cost
Flow (MCF) formulation [10,31,57], which models execution frequency inference as a flow optimiza-
tion problem that minimizes the discrepancy between sampled and inferred counts while preserving
flow conservation. Although effective in principle, MCF-based methods face limitations such as
scalability on large and complex CFGs. To address this issue, the state-of-the-art network flow
algorithm, Profi [20], introduces domain-specific heuristics and CFG transformations to accelerate
MCF solving and improve practicality. However, Profi remains constrained by the rigidity of the MCF
formulation, which cannot capture higher-order execution patterns or adapt to irregular control-flow
structures. Moreover, its reliance on compiler-specific heuristics may lead to biased inferences when
generalizing to unseen programs. These limitations motivate the need for a flexible, data-driven
alternative that can generalize across program domains and scale to large workloads. In this work, we
formulate profile inference as a learning problem and propose a graph-based neural approach that
combines structural and sequential reasoning to infer high-fidelity execution frequencies.

Graph Neural Networks. Graph Neural Networks (GNNs) have emerged as a powerful tool for
modeling structured data represented as graphs [34, 65, 67]. In the context of program optimization,
GNNs are particularly suitable because programs can be naturally represented as various types of
graphs, such as control-flow graphs and data-flow graphs [43, 44, 52]. These graph representations
encode rich structural information, which GNNs can leverage to learn meaningful representations
for tasks like profile inference. A classical GNN model follows the message passing paradigm [15],
where node embeddings are iteratively updated by exchanging information with neighboring nodes.
Specifically, at each iteration t, the embedding h

(t)
v of a node v is updated based on the embeddings

of its neighbors. The message passing process involves two key steps: aggregation and update, which
can be formally described as follows:

m(t)
v = AGGREGATE(t)

(
{h(t−1)

u | u ∈ N (v)}
)
, (1)

h(t)
v = UPDATE(t)

(
h(t−1)
v ,m(t)

v

)
, (2)
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Figure 2: Overview of the model structure in PROFIX for the profile inference problem. Given a
control-flow graph, we extract basic block features and process them through two parallel encoders:
an LSTM for sequential dependencies and a GraphSAGE convolution for structural information.
The outputs are fused and passed through stacked SAGEAttention Layers, each combining LSTM-
based sequence modeling and attention-augmented graph reasoning. The final representation is
projected through a softmax head to infer normalized execution frequencies. A zoomed-in view
(right) illustrates the internal structure of the SAGEAttention Layer, which integrates GraphSAGE,
GAT, and a feedforward module with residual connections and normalization.

where N (v) denotes the set of neighbors of v, and h
(t−1)
u denotes the embedding of neighbor u from

the previous iteration. The aggregated message m(t)
v is combined with the current embedding of node

v to produce an updated embedding. Advances in GNN architectures have significantly enhanced
their ability to capture complex dependencies in program graphs. Traditional message-passing neural
networks (MPNNs) [15] often struggle with capturing long-range dependencies. To address these
limitations, Graph Attention Networks (GAT) [58] and GraphGPS [45] introduce attention-based
mechanisms that enable nodes to weigh neighboring features adaptively, allowing the model to focus
on the most relevant control-flow relationships. Prior work [56] proposes a hybrid model to capture
the specific pattern of directed acyclic graph, while the CFG often contains a loop. Meanwhile,
GraphSAGE [19] provides an inductive learning framework that generalizes well to unseen graph
structures, making it particularly suited for optimizing new, previously unseen CFGs in compiler
workloads. The application of deep learning and GNNs in compiler optimization has been explored
in various domains, including register allocation using reinforcement learning [25, 59], automatic
loop unrolling decisions [6], and performance prediction for microarchitectural modeling [38, 53].

3 Methodology

The profile inference problem arises from inaccuracies in sampling-based profile-guided optimization.
We next formalize the problem and present the design of the GNN model and the PROFIX framework.

3.1 Problem Formulation

Given a control-flow graph of a program, represented as G = (V,E), where V is the set of basic
blocks and E is the set of control-flow edges, the goal is to infer accurate execution frequencies for
each basic block and edge. Each vertex v ∈ V is associated with a sampled execution count w(v),
but these counts are often noisy or incomplete due to sampling errors. Formally, the task is to learn
a mapping function F : G → R|V | that predicts execution frequencies f pred

i for each basic block i,
such that the inferred values closely approximate the true execution frequencies f true

i . These inferred
values reflect more realistic program execution behavior than the sampled execution counts.

3.2 Profile Inference Model

We present the design of our profile inference model based on graph neural networks in Figure 2.
Since the natural graph structure of LLVM IR [30] includes control-flow graphs and data-flow
graphs, it is particularly well-suited for modeling with GNNs. Given the numerous different CFG
structures in diverse real-world programs, we aim to develop a model with strong inductive gen-
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eralization capabilities to ensure the model can reliably infer execution profiles for unseen CFGs
while maintaining robust performance across varying program structures. Toward this goal, we
propose a hierarchical learning paradigm that alternates between sequential learning and graph-based
structural learning. By alternating between these two components, our model effectively captures
both execution sequences of the program and the CFG structural dependencies, enabling the strong
inductive generalization capability of our model for a large variety of CFGs.

3.2.1 Program Feature Extraction

In PROFIX, each basic block (BB) in the CFG is represented as a feature vector xi ∈ Rd extracted
from LLVM IR. Given a CFG G = (V,E), where V is the set of basic blocks and E represents the
control-flow edges, we apply a learnable linear transformation Wproj ∈ Rdh×d to project each basic
block feature into a latent space, following the reversed post-order traversal in CFG:

h
(0)
i = Wprojxi. (3)

These feature vectors encode both static properties (e.g., instruction count, control dependencies) and
sampled profiling statistics. Details of features are available in Appendix E.

3.2.2 Hierarchical Representation Learning

To capture both sequential and structural dependencies within the CFG, we employ an alternating
stack of LSTM layers, which model sequential dependencies, and Graph Attention layers, which
model structural dependencies. This design enables our model to aggregate local neighborhood
information while preserving long-range dependencies inherent in control flow.

Sequential Encoding via LSTM. The sequential structure of basic blocks, as reflected in their
execution order, is captured by a multi-layer Long Short-Term Memory (LSTM) network [4]. The
LSTM processes the sequence of basic blocks, which are extracted through a reversed post-order
traversal of the control-flow graph:

hseq
i = LSTM(h

(0)
i ). (4)

Structural Encoding via GraphSAGE. While sequential features help the model capture a single
execution path of programs, real-world applications often involve complex control-flow graphs
rather than flattened sequences. To encode the structural information within the CFG, we employ
an inductive graph neural network that can generalize to unseen graphs. Specifically, we use
GraphSAGE [19], which aggregates information from neighboring nodes to capture the structural
dependencies in the CFG. The aggregation function AGG(·) we use in PROFIX is mean pooling, and
the learned weights Wsage are used to transform the aggregated neighborhood features:

hsage
i = σ

(
Wsage · AGG

(
{h(t−1)

j : j ∈ N (i)}
))

. (5)

While LSTM-based encoding and GraphSAGE encode sequential and structural relationships among
basic blocks, neither alone fully characterizes program behavior, which involves both localized
execution dependencies (sequential patterns) and global structural properties (CFG connectivity). To
address this challenge, we fuse the sequential and structural representations by concatenating their
embeddings, retaining both execution order and global control-flow information.

Enhanced Inductive Learning with Graph Attention. As illustrated in Figure 2, to further refine
the representation and enhance feature interactions, we pass fused features through a SAGEAttention
Layer, which extends the vanilla GraphSAGE aggregation by incorporating attention mechanisms:

h
(t)
i = SAGEAttention(hconcat

i ). (6)
This layer combines GraphSAGE aggregation (Equation 5) with Multi-Head Graph Attention
(GAT) [58], which aggregates information from neighboring nodes with attention weights:

hgat
i =

∑
j∈N (i)

αijWgathj , (7)

αij =
exp

(
LeakyReLU(aT [Whi ⊕Whj ])

)∑
k∈N (i) exp (LeakyReLU(aT [Whi ⊕Whk]))

. (8)
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Figure 3: Overview of the PROFIX framework. The system operates in two phases: a training phase
(blue background) and an inference phase (red background). In the training phase, both sampled
and ground-truth profiles are collected for C/C++ programs. The sampled profile is obtained using
perf, a hardware-based sampling tool, while the ground truth is generated via instrumentation. Both
profiles are aligned with the LLVM IR [30] and mapped to control-flow graphs, which serve as the
input to the model training pipeline. The trained model learns to reconstruct high-fidelity execution
profiles from noisy samples. In the inference phase, only the sampled profile is required. Given a new
program, we compile it to LLVM IR and extract CFGs. These CFGs are fed into the trained model to
infer execution frequencies for each basic block. The inferred profiles are then passed to the PGO
pipeline to guide subsequent compiler optimizations. PROFIX integrates seamlessly with the LLVM
infrastructure and supports both static and post-link binary optimization workflows.

The final representation is then passed through a feedforward transformation, enabling the model to
selectively focus on important nodes while preserving inductive generalization. To improve stability,
the output is normalized using residual connections.

To enhance inductive generalization, we employ a stacked architecture in which LSTM layers
and SAGE-Attention layers alternate. This design allows the model to iteratively refine basic
block representations by incorporating both local neighborhood information and execution sequence
dependencies. This stacked representation learning is repeated across N layers, to enable a progressive
refinement of embeddings. Finally, to infer the execution frequency distribution, we apply a softmax
projection over the final representation h

(N)
i , which ensures that the predicted frequencies form a

valid probability distribution, consistent with real-world execution patterns.

3.3 Profile Inference Pipeline

As illustrated in Figure 3, PROFIX is designed to enable accurate and scalable profile inference
within modern compiler infrastructures. Unlike traditional heuristic-based solutions [20], it learns
to reconstruct execution profiles directly from sampled data, effectively handling noise, missing
coverage, and structural variability in real-world programs. By combining control-flow-aware graph
representations with neural inference, PROFIX generalizes across diverse applications and adapts
to irregular execution patterns that are difficult to model symbolically. It integrates seamlessly into
the LLVM toolchain, requires no changes to compiler internals, and supports both training-time
supervision and deployment-time inference. Therefore, PROFIX is highly practical for production-
scale adoption, enabling high-fidelity profile-guided optimizations without the cost of instrumentation.

4 Experiments

We evaluate PROFIX with a diverse dataset covering compiler toolchains (Clang [29], GCC [50]),
database systems (MySQL [11], SQLite [13]), and performance benchmarks (SPEC CPU 20172).
These applications span a broad range of code complexity, function structure, and execution behavior.

2https://www.spec.org/cpu2017/
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Table 2: Dataset statistics across five representative applications used for training and evaluation. For
each application, we report the total number of source functions, sampled functions (with available
profiles), and filtered functions (after quality control preprocess), along with the median (q-50%) and
high-percentile (q-90%) number of basic blocks per function to reflect CFG complexity. Total lines
of code (LOC) are also listed to reflect program scale. The dataset includes diverse program sizes
and structural complexity, providing a robust basis for learning generalizable execution profiles.

Application Source Funcs Sampled Funcs Filtered Funcs Blocks / Function Total LOCq-50% q-90%

Clang 20.0 354,365 4920 2557 98 264 9,192,184
GCC 14.2 196,337 5120 1643 92 251 6,672,238
MySQL 8.32 64,813 2467 1199 78 269 4,551,087
SQLite 3 12,794 235 87 29 81 630,516
SPEC CPU 2017 274,677 8696 575 153 611 13,815,845

4.1 Dataset Curation

Table 2 summarizes key dataset statistics. SPEC CPU 2017 stands out with the highest CFG
complexity, underscoring its value for evaluating profile inference in highly diverse scenarios. For
each benchmark, we run a representative workload twice to collect profiles, using sampling-based
and instrumentation-based methods, respectively. The sampling-based profile, obtained via Linux
perf, provides noisy execution counts and serves as the model input, while the instrumentation-based
profile offers ground-truth data for supervision. All profiles are mapped back to their corresponding
LLVM IR [30] CFGs to construct a profile-grounded dataset. To ensure data quality, we apply several
preprocessing steps. We first filter out functions with insufficient sampling data or inconsistent basic
block structures, as they lack meaningful learning signals. Consequently, we normalize execution
counts to reduce sampling bias and stabilize training. Finally, we extract CFGs for each function,
encoding both structure and execution profiles as node and edge attributes.

4.2 Implementation Details

Table 3: Overview of dataset partitioning in two
experimental phases: 1 in-distribution training
and testing, 2 out-of-distribution evaluation.

Phase Source Split Results

1 Clang 20.0, GCC 14.2
MySQL 8.32, SQLite 3

80%, 10%, 10%
(train, val, test) Fig. 4, 5

2 SPEC CPU 2017
(Unseen data) No split Tab. 4, 5

We conduct all training and testing experiments
on a server with 2×Intel(R) Xeon(R) Gold
6444Y CPU (16 Cores), 256 GB RAM, and
2×RTX 5880 GPU (48 GB Memory). Table 3
describes the partition of the collected datasets.
The dataset used in the training and testing phase
consists of CFGs with profiles collected from
Clang, GCC, MySQL, and SQLite. The pro-
cessed data is split into training, validation, and
test sets with a ratio of 80%/10%/10%. The training objective is formulated as a regression problem,
where the predicted execution frequencies are optimized to align with the ground truth collected from
instrumentation. We employ the Root Mean Squared Error (RMSE) Loss during the training phase,
which measures the discrepancy between the inferred execution frequencies and the ground-truth
profiles. RMSE penalizes large deviations more heavily than small ones, making it well-suited
for profile inference tasks where execution frequency errors can significantly impact downstream
compiler optimizations. Given a set of basic blocks V in a control-flow graph, let f pred

i and f true
i

denote the predicted and ground-truth execution frequencies for basic block i, respectively. The
RMSE loss is defined as:

LRMSE =

√
1

|V |
∑
i∈V

(f pred
i − f true

i )2. (9)

To evaluate the accuracy of our inferred execution profiles, we employ a widely used metric, node
frequency overlap [20], as the primary evaluation metric to report our performance evaluation of
PROFIX on SPEC CPU 2017. Given a set of basic blocks V in a control-flow graph, let f true

i and
f pred
i denote the ground truth and inferred execution frequencies for basic block i, respectively. The
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Table 4: Performance comparison of PROFIX and its ablated variants across SPEC 2017 benchmarks.
Each row corresponds to a specific ablation, evaluating the impact of removing or replacing individual
components, including A the sequence encoder, B graph reasoning modules, C parts of the
SAGEAttention layer, and D removed input features. Results are reported in terms of overlap (%),
with the highest value for each column highlighted in bold.

Group Variant Benchmarks Average
perlbench gcc mcf omnetpp x264 deepsjeng leela xz namd parest povray imagick

A
w/o LSTM 89.79 91.62 96.25 92.93 92.05 87.20 93.75 87.57 89.34 95.04 92.57 97.03 92.70

w/ GRU 92.55 91.90 91.33 91.99 93.33 86.61 94.70 86.16 88.01 93.56 90.87 98.68 92.37

B

w/o GNN 88.37 90.41 91.75 89.51 91.20 88.80 90.98 80.97 78.48 91.70 89.74 95.56 90.48
w/ SAGE 93.99 92.44 93.48 90.98 94.05 91.93 93.62 82.10 84.28 93.17 91.29 97.46 92.42
w/ GAT 95.79 92.20 90.48 90.90 93.82 89.53 94.94 85.47 92.07 94.33 94.78 97.86 92.82
w/ GCN 93.89 91.26 91.61 90.41 92.11 83.32 94.89 84.95 86.31 92.90 90.61 94.69 91.72

C
w/o SAGE 93.19 91.83 92.96 91.27 93.39 85.38 92.98 83.39 79.54 92.25 93.12 91.87 91.36

w/o Attention 91.14 90.64 91.51 91.18 91.78 90.57 94.41 78.70 78.27 93.56 88.53 90.17 91.29
w/o Feed-Forward 94.92 92.15 93.72 91.78 94.04 88.90 94.69 78.42 83.05 93.87 93.00 95.56 92.75

D

Succ. Features 88.54 89.42 89.98 88.57 89.81 87.19 90.33 84.91 83.73 90.57 89.86 92.24 90.06
Ctrl-Flow Info 90.88 91.47 91.96 91.03 92.27 89.59 92.03 86.48 85.67 91.91 91.06 93.52 91.32
Memory Ops 92.02 92.23 92.63 91.81 93.03 90.69 93.17 87.86 87.33 92.63 92.01 94.33 92.21

Arit./Logic Ops 90.72 91.26 91.74 90.88 91.81 89.17 91.47 85.95 85.16 91.38 90.57 93.03 91.14
Call/Intris 92.61 92.73 93.07 92.13 93.43 91.08 93.68 88.22 87.88 92.83 92.31 94.51 92.65

PROFIX Full Model 95.83 92.35 96.26 93.98 94.39 90.78 95.92 85.74 88.88 95.12 92.99 98.85 93.42

overlap score is defined as follows:

Overlap =

∑
i∈V min(f true

i , f pred
i )∑

i∈V f true
i

. (10)

This metric measures how much of the true execution profile is accurately captured by the inferred
profile, with higher values indicating better inference quality. Appendix A provides a more detailed
explanation about the rationality of the overlap metric.

4.3 Profile Inference Capability
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Figure 4: Performance comparison of our model
and baseline methods in terms of prediction accu-
racy (RMSE) and consistency (overlap). Lower
RMSE and higher overlap indicate better profile
inference quality. PROFIX achieves the best over-
all result compared to all of the baselines.

We evaluate the profile inference capability of
our model against several representative base-
lines under the hyperparameters listed in Ap-
pendix D, including both sequence-based and
graph-based approaches, on a held-out test set.
Figure 4 reports two key metrics: root mean
square error (RMSE), which measures the nu-
merical accuracy of execution frequency pre-
diction, and overlap, which captures the align-
ment between predicted and ground-truth basic
block execution frequencies. PROFIX achieves
the best overall performance and accuracy, with
an RMSE of 0.0341 and an overlap of 93.50%.
These results confirm that combining sequential
and structural reasoning in a unified architecture
significantly improves profile inference quality.

4.4 Training Convergence Analysis

To further analyze the efficiency and stability of our approach, we compare the training and validation
loss curves of all models over 60 epochs. Figure 5 presents the training loss trajectories and the
validation loss curves. From the training loss curves, we observe that PROFIX converges significantly
faster than baselines, achieving a lower final training loss. While GraphSAGE and GAT exhibit
relatively stable convergence, their final loss remains higher, which indicates that they struggle to
generalize across different CFG structures. The LSTM-based model shows slower convergence
and higher training loss, which supports the hypothesis that sequential models are less effective
at capturing graph-based execution patterns. In terms of validation loss, PROFIX maintains lower
validation error throughout training, demonstrating strong inductive and generalization capability.
In contrast, models such as GCN and GIN exhibit higher validation loss fluctuations, indicating
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Table 5: The overlap (%) results on the SPEC CPU 2017 benchmarks. Symbolic represents the
state-of-the-art traditional profile inference algorithm, while the rest are neural network baselines.

Benchmarks Symbolic Neural Models
Profi [20] LSTM [22] GCN [26] SAGE [19] GIN [64] GAT [58] Graph GPS [45] DAGNN [56] PROFIX

perlbench 86.68 89.76 77.61 92.31 77.74 78.74 91.85 90.37 95.83
gcc 91.90 89.23 82.44 91.95 82.80 93.39 90.27 88.93 92.35
mcf 95.97 92.31 89.94 84.93 93.50 91.48 94.12 92.06 96.26
omnetpp 93.76 87.72 82.52 92.37 82.34 80.04 89.18 88.44 93.98
x264 93.12 94.01 85.47 94.13 86.20 86.82 92.49 91.67 94.39
deepsjeng 87.89 91.70 94.91 91.43 94.15 92.97 93.40 92.55 90.78
leela 92.89 90.77 86.03 94.92 86.02 83.96 92.08 91.30 95.92
xz 91.02 80.03 82.51 85.91 81.08 82.35 85.64 84.73 85.74
namd 93.84 87.38 65.38 77.81 64.15 69.63 83.25 81.42 88.88
parest 91.39 89.95 86.32 94.05 86.33 83.54 91.77 90.90 95.12
povray 92.48 87.43 82.54 92.00 81.78 83.43 90.09 89.67 92.99
imagick 90.14 87.69 75.77 93.83 75.58 81.95 94.10 93.15 98.85
Average 91.76 89.00 86.62 90.47 82.64 84.03 89.42 87.95 93.42

overfitting to specific function structures. Notably, LSTM struggles with stability, which indicates its
difficulty in adapting to programs with CFG dependencies.

4.5 Ablation Study
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Figure 5: Training and validation loss curves for
PROFIX and baseline models over first 60 epochs.
Our model converges faster and achieves lower
final loss on both training and validation sets, indi-
cating superior inductive generalization capability.

To demonstrate the contribution of each archi-
tectural component, Table 4 presents an ablation
study, where key modules in our model are sys-
tematically removed or replaced.

A Variants on sequence modeling. We eval-
uate the role of sequential encoding by modi-
fying the LSTM-based encoder. Removing the
LSTM entirely results in notable accuracy degra-
dation, indicating the importance of capturing
execution order among basic blocks. Replacing
it with a simpler GRU unit also leads to perfor-
mance drops, though less severe, suggesting that
the higher expressive capacity of LSTM offers
benefits in modeling sequential dependencies.

B Variants on graph reasoning. To examine
the impact of structural modeling, we replace the
GNN components with various alternatives. Re-
moving all GNN layers and using a Multi-Layer
Perceptron significantly impairs performance,
confirming the importance of graph-based rea-
soning. Among inductive GNN variants, sub-
stituting our SAGEAttention layer with Graph-
SAGE or GAT leads to significant degradation.
In contrast, using a transductive GCN model,
which is unable to generalize to unseen graphs,
results in consistently lower accuracy.

C Variants on SAGEAttention components. We further dissect the SAGEAttention layer by
ablating individual components. Removing GraphSAGE aggregation, the attention mechanism, or
the feedforward transformation each causes measurable performance declines, highlighting their
complementary roles in enabling expressive and context-aware message passing.

D Variants on Input Features. The feature ablation results show that all feature groups contribute
to the performance. Removing successor or control-flow features causes the largest accuracy drop,
confirming their importance for capturing execution dependencies and CFG structure. Other groups,
such as memory and operation features, have smaller effects, indicating that the model can compensate
for them through learned relational reasoning. Overall, the results highlight the complementary nature
of our feature design and the robustness of PROFIX when features are partially removed.
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Table 6: Parameter-matched comparison of baselines. All models have comparable parameter counts
(∼ 1.67M) and are trained for the same number of epochs. Results are reported in overlap (%).

Model #Params (M) Train Time (s/epoch) Inference Time (ms/sample) Overlap (%)
LSTM 1.68 2.14 0.97 85.42
GCN 1.67 0.62 1.33 76.87
GIN 1.68 0.69 1.03 78.76
GAT 1.65 0.81 1.92 83.79
GraphSAGE 1.68 0.75 1.12 88.97
GraphGPS 1.67 1.39 1.97 89.31
DAGNN 1.66 1.29 1.79 86.54

PROFIX 1.67 1.33 1.72 93.50

Overall, the ablation results validate the effectiveness of our hierarchical design. The full model
achieves the best performance across benchmarks, underscoring the importance of jointly modeling
both CFG structure and sequential execution order for accurate profile inference.

4.6 Controlled Compute and Parameter Scaling for Baselines

In order to further control for the impact of model capacity and computational cost, we conducted an
additional set of experiments in which all baselines were adjusted to have approximately the same
number of parameters (∼ 1.67M), the results are summarized in Table 6. Each baseline model was
first trained using the hyperparameter settings recommended by its original authors, which are widely
recognized as optimal or near-optimal for the respective architectures.

Overall, our method consistently outperforms all baselines even under strictly controlled compute
and parameter budgets. These results indicate that the observed performance gains stem from the
architectural design and inductive reasoning capability of our model, rather than from increased
model size or computational advantage.

4.7 Performance on Real-World Applications

To evaluate the inductive generalization capability of our model, we measure profile inference
accuracy on the diverse SPEC CPU 2017 benchmarks, which feature a wide range of control-flow
complexities, function sizes, and execution patterns. As shown in Table 5, our model consistently
outperforms all baselines across benchmarks, achieving up to 98.85% profile accuracy on imagick,
96.26% on mcf, and 95.83% on perlbench. It shows particular strength on structured control-flow
workloads like parset and leela, where traditional GNNs and LSTM struggle to deal with. Overall,
PROFIX improves overlap by up to 9.15% over Profi and achieves an average 6.26% improvement
over other ML baseline models, highlighting the effectiveness of our model design.

4.8 Impact on Downstream Compiler Optimizations

To demonstrate the practical benefits of improved profile inference, we integrate our profile inference
model into the LLVM profile-guided optimization pipeline. We evaluate the performance improve-
ments of PGO on MySQL by using profiles inferred by our model, compared to raw sampling-based
and Profi-inferred profiles. Incorporating our refined profiles, the PGO-optimized binary achieves a
12.1%(±0.3%) average speedup over the native binary, while raw profiles only yield an 8.3%(± 0.1%)
speedup, and Profi-inferred profiles result in a 9.7%(± 0.3%) speedup. We run MySQL benchmarks
multiple times to ensure these results are within 95% confidence interval under t-distribution [28].
These results highlight the effectiveness of PROFIX in enhancing PGO performance.

5 Conclusion

This paper presents PROFIX, a novel graph neural network (GNN)-based model and framework to
improve the profile inference accuracy for sampling-based profile-guided optimization (PGO) in
compilers. Comprehensive experiment results on real-world benchmark applications demonstrate
that our GNN-based model achieves significant improvements over both state-of-the-art traditional
algorithms and baseline machine learning models. These results demonstrate the superiority of
PROFIX in improving the performance of sampling-based PGO and compiler optimization.
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A Overlap Metric

To evaluate the quality of predicted execution profiles, we adopt the overlap metric, a widely used
evaluation measure in prior work [20]. Overlap quantifies how well the predicted execution frequency
distribution aligns with the ground truth. It is formally defined as:

Overlap =

∑
i∈V min(f true

i , f pred
i )∑

i∈V f true
i

, (11)

where f true
i and f pred

i denote the normalized execution frequencies of basic block i in the ground truth
and predicted profiles, respectively.

This metric captures the intersection between predicted and actual execution distributions. An overlap
score of 1 indicates perfect prediction (i.e., f pred

i = f true
i for all i), whereas a score of 0 indicates no

alignment at all. Note that, because the numerator uses the minimum of f true
i and f pred

i , overestimating
a block’s frequency does not artificially inflate the score.

To ensure that f pred represents a valid probability distribution, our model applies a softmax layer
across all basic blocks in each function:

n∑
i=1

f pred
i = 1,

where n is the number of basic blocks. This normalization constrains the model to distribute a fixed
amount of probability mass. As a result, increasing the predicted frequency for one block necessarily
decreases the predicted frequency for others, which prevents arbitrary inflation of overlap scores.

We illustrate the overlap metric with a simple example. Suppose a function contains three basic
blocks, and the true normalized execution frequencies are:

f true = [0.5, 0.3, 0.2].

Case A (Perfect Prediction):

f pred = [0.5, 0.3, 0.2] ⇒ overlap = 1.0

Case B (Overestimate BB2, Underestimate BB1):

f pred = [0.3, 0.5, 0.2] ⇒ overlap = 0.3 + 0.3 + 0.2 = 0.8

As seen above, although BB2 is overestimated, the increase comes at the expense of BB1, whose
prediction is now lower than the ground truth. Because the overlap only accounts for the minimum
between predicted and true values, misalignment in any direction—over or under—will reduce the
score.

In summary, the overlap metric provides a meaningful and bounded measure of prediction quality. It
encourages models to align with ground-truth distributions holistically, rather than simply boosting
predictions for a few hot blocks. Thanks to softmax normalization, our model inherently avoids
degenerate solutions where predicted frequencies are uniformly inflated, ensuring that the overlap
metric faithfully reflects profile inference accuracy.

B Model Complexity

We analyze the theoretical computational complexity of each major component in PROFIX, as
summarized in Table 7. The LSTM layer has a complexity of O(4Nh2 + 4Ndh), where N is the
number of basic blocks, d is the input dimension, and h is the hidden size. This complexity accounts
for the computation of four internal gates per time step.

For structural encoding, the GraphSAGE layer incurs O(N(kd + d2)) complexity, where k is the
average number of neighbors per node. Our SAGEAttention layer combines attention-based edge
weighting and neighborhood aggregation, resulting in O(Ed+N(kd+ d2)), where E denotes the
number of edges.
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The total complexity across all L stacked layers is approximately O(L · (Nh2 + Ed + Nd2)),
reflecting the alternating design of LSTM and SAGEAttention blocks. This hybrid architecture strikes
a balance between expressiveness and scalability, making it feasible for large-scale control-flow
graphs extracted from real-world software.

Table 7: Complexity of different model components.
Layer Type Complexity Comment

LSTM O(4Nh2 + 4Ndh)
Every time step calculates 4 gates (input, forget,
output, candidate), sequence length is T = N

GraphSAGE O(N(kd+ d2))
Neighbor aggregate N · k · d and

linear transformation N · d2

SAGEAttention O(Ed+N(kd+ d2))
GAT attention calculation E · d and

GraphSAGE O(N(kd+ d2))

Overall O(L · (Nh2 + Ed+Nd2))
Every layer contains LSTM and

SAGEAttention, L layers, E ∼ O(kN)

where

• N is the number of nodes (basic blocks),
• E is the number of edges,
• d is the input dimension,
• h is the hidden dimension of LSTM,
• k is the average number of neighbors in GraphSAGE,
• L is the number of our SAGEAttention layers.

C Training Time Comparison

We report the training, validation, and inference time for PROFIX and baselines in Table 8. Runtime
is measured on a per-epoch basis for training and validation, and per-sample basis for inference.
Among all methods, our model incurs the highest computational cost due to its stacked architecture
of LSTM and SAGEAttention layers. Despite this overhead, the training time remains under 1.5
seconds per epoch, and inference requires only 1.72 milliseconds per sample, making it suitable for
offline optimization scenarios.

Table 8: Training, validation, and inference time comparison.

Model Training Time
(S/epoch)

Validation Time
(S/epoch)

Inference Time
(ms/sample)

Profi N/A N/A 16.12
LSTM 1.075 0.258 0.32
GCN 0.172 0.276 0.48
GraphSAGE 0.209 0.235 0.39
GIN 0.181 0.180 0.25
GAT 0.252 0.388 0.71
PROFIX 1.328 0.830 1.72

In terms of computational complexity, our model combines the costs of recurrent and graph-based
modules. The LSTM contributes O(Nh2) per sequence, while the SAGEAttention layer—composed
of GraphSAGE and GAT—adds O(Ed + Nd2) per graph layer, where N is the number of basic
blocks, E the number of control-flow edges, h the LSTM hidden size, and d the embedding dimension.
Given L stacked layers, the total forward-pass complexity becomes O(L · (Nh2 + Ed + Nd2)).
Although this hybrid design introduces greater computational cost, it yields significantly improved
accuracy, as shown in earlier evaluation.

As shown in the table, the traditional algorithm does not require training but requires a longer
inference time. This is due to the fact that it directly operates on the internal data structures of
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LLVM, which introduces extra execution time. On the other hand, PROFIX does require more
training time compared to simpler machine learning models like LSTM or GraphSAGE. However,
the additional time investment leads to significant improvements in the overall performance of the
optimized binaries, as discussed in Section 4.7 We attribute this difference to the tradeoff between
time and accuracy, where the additional training time enables the model to generate more accurate
profiles, ultimately enhancing the effectiveness of profile-guided optimization.

D Hyperparameters

We summarize the key hyperparameters used during model training in Table 9. The model is
optimized using the Adam optimizer with an initial learning rate of 0.001, and a StepLR scheduler is
applied to gradually reduce the learning rate during training. The LSTM hidden size is set to 256,
and we stack three SAGEAttention layers with a dropout rate of 0.1 for regularization. Training is
performed with early stopping based on validation loss, using a patience of 10 epochs. We employ
root mean square error (RMSE) as the loss function, and split the dataset into 80% training, 10%
validation, and 10% testing. These choices balance performance and generalization while ensuring
stable convergence across benchmarks.

Table 9: Key hyperparameters for model training.

Hyperparameter Value
Learning Rate 0.001
Train Batch Size 128
Validate/Test Batch Size 1
Optimizer Adam
Weight Decay 0 (No weight decay)
Learning Rate Scheduler StepLR (Step Size: 5, Gamma: 0.97)
Epochs 300
LSTM Hidden Size 256
SAGE Attention Layers 3
Dropout Rate 0.1
Early Stopping Patience 10
Loss Function RMSE Loss
Train-Validate-Test Split Ratio 80%, 10%, 10%

E Key Features extracted from LLVM IR

Table 10 summarizes the key features we extracted from the LLVM IR code, based on the data
collected during profiling and instrumentation. These features are essential for understanding the be-
havior of basic blocks in the functions being analyzed and for representing the program characteristics.
Furthermore, the use of LLVM IR makes PROFIX agnostic to the source language.

In our analysis, we not only extract various instruction-level features from each basic block but
also consider the structural relationship between basic blocks by incorporating the features of their
successors. This design enables us to capture how the control flow and branching behavior of a
program influence its execution patterns.

For each basic block (BB), the following features are computed:

• Successor Blocks: The set of successor blocks (or target blocks for branches) is considered a
key feature of the current basic block. This feature is important because the control flow from
one basic block to another directly impacts the execution frequency and the optimization
strategies employed by the compiler.

• Successor Features: For each successor block of a given basic block, we append its own
feature vector to represent the relationship between the current block and its successors.
Specifically:
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Table 10: Key features extracted from the LLVM IR.

Feature Type Fields Description
(Information Modeled)

Control Flow

phiNumber Number of PHI nodes (Models control flow dependencies)
successorNumber Number of successors (branches) (Models control flow)

predecessorNumber Number of predecessors (Models control flow)
isEntry Flag indicating if the basic block is the entry block (Models entry point)
isExit Flag indicating if the basic block is an exit block (Models exit point)

isLoopHeader Flag indicating if the basic block is a loop header (Models loop structure)

Memory Operations

loadNumber Number of load instructions (Models memory read operations)
storeNumber Number of store instructions (Models memory write operations)
gepNumber Number of GetElementPtr instructions (Models memory access)

instructionNumber Total number of instructions (Models overall memory instructions)

Arithmetic and Logic
arithmeticNumber Number of arithmetic operations (Models computational complexity)
logicalNumber Number of logical operations (Models computational complexity)
castNumber Number of cast instructions (Models type conversion)

Call and Intrinsics callNumber Number of call instructions (Models function call behavior)
intrinsicNumber Number of intrinsic function calls (Models specialized operations)

– For conditional branches, the two successor blocks corresponding to the true and false
branches are treated as two distinct features.

– For unconditional branches, only the single successor block is considered.
– For switch statements, each potential successor (case or default block) is included in the

feature set, with the average feature vector being calculated across all case successors.

• Feature Representation: The feature vector of each basic block includes the features of its
immediate successors. This feature helps to model the impact of branching on the execution
flow, where the behavior of a block’s successors (such as their instruction count, branch
direction, or loop presence) is critical for making predictions on the block’s behavior and its
contribution to the overall function execution.

• Adjacency Information: The adjacency between basic blocks is stored as a set of features that
reflect the program’s control flow graph (CFG). This adjacency information is concatenated
with the instruction-level features of the basic block to provide a complete representation of
the block in the context of its neighbors in the program’s control flow. This feature includes
the number of predecessors and successors, which informs the model about the block’s
position in the program’s flow.

F Limitations

While our approach demonstrates strong performance across a range of benchmarks, there are
a few limitations worth noting. First, the current model is trained and evaluated on statically
compiled programs with well-defined control-flow graphs; applying the method to highly dynamic
or just-in-time compiled workloads may require additional adaptations. Second, although our
framework generalizes across multiple applications, domain-specific fine-tuning could further improve
performance in specialized settings such as embedded systems or GPU kernels. Lastly, our evaluation
primarily focuses on offline optimization scenarios; exploring integration with online or interactive
profiling workflows remains an interesting direction for future work.

G Broader Impacts

Our work on enhancing compiler optimization through improved profile inference using a Graph
Neural Network (GNN)-based model has several broader impacts. First, by increasing the accuracy
of profile data, our approach can lead to the generation of more efficient binaries, potentially reducing
energy consumption and computational costs across a wide range of applications. This is particularly
significant given the growing environmental concerns associated with high-performance computing
and data centers. Furthermore, the improved efficiency and performance of software may contribute to
enhanced user experiences and enable more complex computational tasks to be performed on existing
hardware, extending the lifespan of devices and reducing electronic waste. However, the increased
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efficiency and optimization capabilities also raise concerns about potential misuse. Optimized binaries
could be used to amplify the effectiveness of malicious software, making it more difficult to detect
and counteract. Therefore, our work underscores the importance of incorporating safety and ethical
considerations into the development and deployment of compiler optimization technologies.
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS code of ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?

Answer: [Yes]
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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cited in Section 1 and Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented in our anonymous
github repository at https://anonymous.4open.science/r/pgo-gnn.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any experiments and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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